a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm ở Ví dụ 4 sau khi đã loại bỏ các giá trị ngoại lệ. Có nhận xét gì về khoảng biến thiên, khoảng tứ phân vị vừa tìm được và khoảng biến thiên, khoảng tứ phân vị ban đầu?
b) Hãy so sánh mức độ phân tán của hai mẫu số liệu chiều cao của các học sinh nữ lớp 12C và 12D ở Thực hành 1.
a) Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{100}}\) là mẫu số liệu gốc gồm thời gian 100 lần ông Thắng đi xe buýt từ nhà đến cơ quan được xếp theo thứ tự không giảm.
Khoảng biến thiên R = 33 – 15 = 18(phút)
Ta có: \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{22}} \in [15;18)\); \({x_{23}}; \ldots ;{\rm{ }}{x_{60}} \in [18;21)\); \({x_{61}}; \ldots ;{\rm{ }}{x_{87}} \in [21;24)\); \({x_{88}}; \ldots ;{\rm{ }}{x_{95}} \in [24;27)\);\({x_{96}}; \ldots ;{\rm{ }}{x_{99}} \in [27;30)\);\({x_{100}} \in [30;33)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({x_{25}} + {x_{26}}) \in [18;21)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 18 + \frac{{\frac{{100}}{4} - 22}}{{38}}(21 - 18) = \frac{{693}}{{38}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}({x_{75}} + {x_{76}}) \in [21;24)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 21 + \frac{{\frac{{3.100}}{4} - (22 + 38)}}{{27}}(24 - 21) = \frac{{68}}{3}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{505}}{{114}}\)
Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \(x > {Q_3} + 1,5{\Delta _Q}\) hoặc \(x < {Q_1} - 1,5{\Delta _Q}\)
Hay \(x > \frac{{39}}{2} + 1,5.\frac{{24}}{{19}} = 21,39\) hoặc \(x < \frac{{693}}{{38}} - 1,5.\frac{{24}}{{19}} = 16,34\)
Vậy các giá trị ngoại lệ thuộc khoảng [15;18); [24;27); [27;30); [30;33)
Khoảng biến thiên của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ: 24 – 18 = 6(phút)
Gọi \({z_1};{\rm{ }}{z_2}; \ldots ;{\rm{ }}{z_{65}}\) là mẫu số liệu gốc gồm thời gian 65 lần ông Thắng đi xe buýt từ nhà đến cơ quan được xếp theo thứ tự không giảm, sau khi đã loại bỏ các giá trị ngoại lệ
Ta có: \({z_1};{\rm{ }}{z_2}; \ldots ;{\rm{ }}{z_{38}} \in [18;21)\); \({z_{39}}; \ldots ;{\rm{ }}{x_{65}} \in [21;24)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({z_{17}} \in [18;21)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}'' = 18 + \frac{{\frac{{65}}{4}}}{{38}}(21 - 18) = \frac{{2931}}{{152}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({z_{50}} \in [21;24)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}'' = 21 + \frac{{\frac{{3.65}}{4} - 38}}{{27}}(24 - 21) = \frac{{799}}{{36}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}'' = {Q_3}'' - {Q_1}'' = 2,91\)
Nhận xét: Sau khi loại bỏ giá trị ngoại lệ, khoảng biến thiên mới giảm mạnh còn khoảng tứ phân vị mới không bị ảnh hưởng nhiều
b) Cỡ mẫu \(n = 25\)
Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12C được xếp theo thứ tự không giảm.
Ta có: \({x_1};{\rm{ }}{x_2} \in [155;160)\); \({x_3}; \ldots ;{\rm{ }}{x_9} \in [160;165)\);\({x_{10}}; \ldots ;{\rm{ }}{x_{21}} \in [165;170)\);\({x_{22}}; \ldots ;{\rm{ }}{x_{24}} \in [170;175)\);\({x_{25}} \in [180;185)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({x_6} + {x_7}) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 160 + \frac{{\frac{{25}}{4} - 2}}{7}(165 - 160) = \frac{{4565}}{{28}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 165 + \frac{{\frac{{3.25}}{4} - (2 + 7)}}{{12}}(170 - 165) = \frac{{2705}}{{16}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{675}}{{112}}\)
Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{25}}\) là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12D được xếp theo thứ tự không giảm.
Ta có: \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_5} \in [155;160)\); \({y_6}; \ldots ;{\rm{ }}{y_{14}} \in [160;165)\);\({y_{15}}; \ldots ;{\rm{ }}{y_{22}} \in [165;170)\);\({y_{23}};{\rm{ }}{{\rm{y}}_{24}} \in [170;175)\);\({y_{25}} \in [175;180)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({y_6} + {y_7}) \in [160;165)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}' = 160 + \frac{{\frac{{25}}{4} - 5}}{9}(165 - 160) = \frac{{5785}}{{36}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{19}} \in [165;170)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}' = 165 + \frac{{\frac{{3.25}}{4} - (5 + 9)}}{8}(170 - 165) = \frac{{5375}}{{32}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}' = {Q_3}' - {Q_1}' = \frac{{2095}}{{288}}\)
Có \({\Delta _Q}' > {\Delta _Q}\) nên chiều cao của các bạn học sinh nữ lớp 12D có độ phân tán lơn hơn lớp 12C