1) tính hợp lí ( nếu có thể )
c) \(\dfrac{2}{-11}\). 6\(\dfrac{2}{7}\)+ \(\dfrac{3}{7}\):3 + 5 d) 1,75 : 5 + 2,5 . ( \(4^2\)- 4. 4,1)
2) tìm x
a) 1/2-x=-1/6 b) x+3,5=7,8-12,6:2 c) 7/35 = 35-x/-105
Bài 1: Tìm x, biết
a) 3\(\dfrac{1}{3}\) x+ 16\(\dfrac{3}{4}\) = -13,25
b) 3\(\dfrac{2}{7}\).x - \(\dfrac{1}{8}\) = 2\(\dfrac{3}{4}\)
c) x : 4\(\dfrac{1}{3}\) = - 2,5
d) (\(\dfrac{3x}{7}\) + 1) : (-4) = \(\dfrac{-1}{28}\)
giúp em
Bài 1 : Thực hiện phép tính ( tính hợp lý nếu có thể )
a ) \(\dfrac{1}{12}+\dfrac{3}{4}\)
b ) \(\dfrac{-4}{7}.1\dfrac{1}{2}\)
c )\(\dfrac{7}{9}+\left(\dfrac{2}{3}+\dfrac{-7}{9}\right)\)
d )\(\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}\)
e )\(\dfrac{-7}{25}.\dfrac{11}{13}+\dfrac{-7}{25}.\dfrac{2}{13}\)
g )\(2\dfrac{2}{5}.0,25-\left(\dfrac{11}{20}+75\%\right):\dfrac{13}{5}\)
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
1.Tính nhanh:
A= \(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
2. Cho: B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\) .Hãy chứng tỏ rằng B > 1.
3. Rút gọn:
a) C= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{20}\right)\)
b) D= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
4. So sánh: E=\(\dfrac{20^{10}+1}{20^{10}-1}\) và F =\(\dfrac{20^{10}-1}{20^{10}-3}\)
5. Tính giá trị của biểu thức:
M= \(\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\)
Bài 1: Tìm x, biết
a)\(\dfrac{-2}{3}\)- \(\dfrac{1}{3}\) (2x-5) = \(\dfrac{3}{2}\)
b)\(\dfrac{2}{5}\) .x +\(\dfrac{1}{2}\) = \(\dfrac{-3}{4}\)
giúp em
Cho tổng gồm 2014 số hạng: \(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2014}{4^{2014}}\). Chứng minh rằng \(S< \dfrac{1}{2}\)
tính H = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
\(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)