\(2-\left|\frac{3}{4}-x\right|=\frac{7}{12}\)
=> \(\left|\frac{3}{4}-x\right|=\frac{17}{12}\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}-x=\frac{17}{12}\\\frac{3}{4}-x=-\frac{17}{12}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}-\frac{17}{12}\\x=\frac{3}{4}-\left(-\frac{17}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=\frac{12}{6}\end{matrix}\right.\)
2-\(\left|\frac{3}{4}-x\right|\)=\(\frac{7}{12}\)
=>\(\left|\frac{3}{4}-x\right|\)=2-\(\frac{7}{12}\)
=>\(\left|\frac{3}{4}-x\right|\)=\(\frac{17}{12}\)
=>\(\left\{{}\begin{matrix}\frac{3}{4}-x=\frac{7}{12}=>x=\frac{1}{6}\\\frac{3}{4}-x=\frac{-7}{12}=>x=\frac{4}{3}\end{matrix}\right.\)
Vậy x∈{\(\frac{1}{6};\frac{4}{3}\)}