Ta có: \(\frac{6a+1}{3a-1}=2+\frac{3}{3a-1}\)
Để (6a+1) ⋮ (3a -1) thì: 3a-1 thuộc Ư(3) ={1; -1; 3; -3}
-Với 3a-1=1 => a=\(\frac{2}{3}\) (Loại)
- Với 3a- 1= -1 => a= 0 (Chọn)
- Với 3a -1 = 3 => a= \(\frac{4}{3}\)(Loại)
- Với 3a- 1= -3=> a= \(\frac{-2}{3}\)( Loại)
Vậy số nguyên a cần tìm là 0
2) Ta có :A+B= a+ b -5 + (-b)-c+1= a - c - 4 (1)
Ta có: C-D= b- c- 4 - ( b- a) = b - c- 4- b + a= a- c -4 (2)
Từ (1) và (2) => A+B= C-D