bạn chọn vô biểu tượng fx cái thứ 2 dòng trên cùng từ trái qua đó
bạn chọn vô biểu tượng fx cái thứ 2 dòng trên cùng từ trái qua đó
Cho a,b,c >= 0 thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của A= căn bậc ba (a+b) + căn bậc ba (b+c) + căn bậc ba (c+a)
áp dụng bất đẳng thức cô si chứng minh các bất đẳng thức:
a, (a+b+c)*(a^2+b^2+c^2)>=9abc
b,\(\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)>=\left(1+\sqrt[3]{abc}\right)^3\)
c, a^2*(1+b^2)+b^2*(1+c^2)+c^2(1+a^2)>=6abc
>=: lớn hơn hoặc bằng
Xin mn cố giúp mik vs:(( khó quá
Cho a,b,c là số dương thỏa mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+3\ge2\left(a+b+c\right)\)
chứng minh bất đẳng thức 3<2^(1+1/căn 2)
Cho a2+b2+c2=1. Cmr: a+b+c+ab+bc+ac=< 1+ căn 3
Cho 3 số thực dương a, b, c. Chứng minh bất đẳng thức sau:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh bất đẳng thức sau:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(a,b,c>0\right)\)
1. Cho a,b >0, ab=1. CMR: 1/(1+a)^2 +1/(1+b)^2 >=1/2
2. Cho a,b >0, ab=1. Tìm GTLN của P=a/ căn (a^4+3) +b/căn (b^4+3)