Câu trả lời:
Thay abc=2013 vào P
P= \(\dfrac{abc.a^2bc}{ab+abc.a+abc}\)+\(\dfrac{ab^2c}{bc+b+abc}+\dfrac{abc^2}{ac+c+1}\)
P=\(\dfrac{a^3b^2c^2}{ab\left(1+ac+c\right)}+\dfrac{ab^2c}{b\left(c+1+ac\right)}+\dfrac{abc^2}{ac+c+1}\)
P=\(\dfrac{a^2bc^2}{ac+c+1}+\dfrac{abc}{c+ac+1}+\dfrac{abc^2}{ac+1+c}\)
P=\(\dfrac{a^2bc^2+abc+abc^2}{ac+c+1}\)
P=abc (*)
Thay abc=2013 vào (*)
P=2013