HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Mình làm xin bạn xem kĩ :
giả sử đã cm xong ta có :
thay a2 +b2 +c2 = 1 vào vế trái bđt trên, ta có :
\(1+\frac{c^2}{a^2+b^2}+1+\frac{a^2}{b^2+c^2}+1+\frac{b^2}{a^2+c^2}\le\left(vế\right)phải\) ( khi thế vào có các tử bằng mẫu )
<=> \(\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (1)
Vậy ta chỉ cần cm điều trên đúng thì xong
Bạn để ý với a,b,c là số dương thì :
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
=> \(\frac{1}{a^2+b^2}\le\frac{1}{2ab}\)
=> \(\frac{c^2}{a^2+b^2}\le\frac{c^2}{2ab}\)
Tương tự với các bđt còn lại. Sau đó cộng các vế lại ta sẽ được bđt (1) => (1) đúng => đpcm
Bạn cũng vậy nha !!!
làm thế nào zẽ ô như zậy zợ? Chỉ mk nha
mình vừa đi chùa về