Câu trả lời:
bài này giải đc cách lớp 7
chứng minh định lý phụ : đường trung bình (đường nối bởi 2 điểm trung điểm của cạnh 1 và 2 của 1 tam giác) song song với cạnh còn lại
các bạn tự chứng minh định lý phụ kia, định lý này trên mạng có nhiều (có cách giải lớp 7) nên mình sẽ ko chứng minh lại nữa
ta áp dụng định lý phụ vào bài:
vì tâm đường tròn tam giác ngoại tiếp là o => o là giao điểm 3 đường trung trực.
đường thẳng GO cắt AH tại H', F,P,D lần lượt là trung điểm của AG,H'G,BG nên
FP,PD lần lượt là đường trung bình của tam giác BGH', AGH'
=> FP//AH', PD//BH'
vì AH là đường cao, OK là đường trung trực , H' thuộc AH=> AH'//OK
mà FP//AH' => FP//OK
vì AK là đường trung tuyến, trọng tâm G => AG=2GK mà Flà trung điểm của AG => FG=GK
xét tam giác FGP,GOK:
FG=GK, góc OGK=FGP (đối đ), góc GFB=GKO ( FP//OK)
=> OG=GP
vì BM là đường trung tuyến, trộng tâm G, D là trung điểm của BG=> DG=GM
xét tam giác PGD,MOG:
OG=GP, DG=GM, góc G1=G2 (đđ)
=> PD//OM mà PD//BH' => BH'//OM mà OM là đường trung trực => BH' là đường cao mà AH' cũng là đường cao => H' là trực tâm=> H trùng với H' => H,G,O thằng hàng