Ta có: d1 giao d2 có tọa độ A(1;0)
nếu ta gắn A(1;0) thành O(0;0) và d2 thành trục Ox
ta có thể ngầm tưởng như sau:
áp dụng công thức tính cos giữa 2 đg thẳng d1 và d2
=> cos alpha=\(\dfrac{16}{65}\)
=> cos giữa d3: đg phân giác của góc nhọn với d2 =\(\sqrt{\dfrac{81}{130}}\)
áp dụng công thức 1+ (tan \(\dfrac{alpha}{2}\))2 =\(\dfrac{1}{cos\left(\dfrac{alpha}{2}\right)^2}\)
=> tan \(\dfrac{alpha}{2}\)=\(\sqrt{\dfrac{1}{\dfrac{81}{130}}-1}\)
tan \(\dfrac{alpha}{2}\)=\(\dfrac{7}{9}\)
mà tan alpha/2=k của d3 và d2
=> d3 có dạng y=\(\dfrac{7}{9}x\)
=> dạng d3 nếu bỏ gắn A thành O và d2 thành trục Ox sẽ có dạng
-by=\(\dfrac{7}{9}x+c\)
Vì d3 đi qua A(1;0)
=>\(-b.0=\dfrac{7}{9}.1+c\)
=>\(c=-\dfrac{7}{9}\)
=>d3:\(\dfrac{7}{9}x+by-\dfrac{7}{9}=0\)
=>\(7x+9by-7=0\)
mà cos alpha/2=\(\sqrt{\dfrac{81}{130}}=\dfrac{\text{|
7.12+9b.5
|}}{\sqrt{7^2+\left(9b\right)^2}\sqrt{12^2+5^2}}\)
\(=>\left[{}\begin{matrix}b=-\dfrac{7}{33}\\b=\dfrac{301}{219}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}7x-\dfrac{21}{11}y-7=0\\7x+\dfrac{903}{73}-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}11X-3Y-11=0\\73X+129Y-73=0\end{matrix}\right.\)
Tính cos giữa \(11X-3Y-11=0\)
và d2 thõa mãn yêu cầu nên nhận
cos giữa \(73X+129Y-73=0\)
và d2 ko thõa mãn yêu cầu nên loại
mình mới nghỉ ra cách này thôi, nên còn nhiều thiếu xót
mình mới lớp 10 ak nha :< nên thầy cô nào xem được góp ý hộ con ạ :))