Câu trả lời:
a. \(x^4y+3x^3y^2+3x^2y^3+xy^4=xy\left(x^{^3}+y^{^3}\right)+3x^{^2}y^{^2}\left(x+y\right)=xy\left(x+y\right)\left(x^{^2}-xy+y^{^2}\right)+3x^2y^{^{ }2}\left(x+y\right)=xy\left(x+y\right)\left(x^{^2}-xy+y^{^2}+3xy\right)=\left(x+y\right)^{^3}xy\)
b\(x^{^{ }4}+64=x^{^{ }4}+16x^{^{ }2}+64-16x^{^{ }2}=\left(x^{^2}+8\right)^{^2}-16x^{^2}=\left(x^{^2}-4x+8\right)\left(x^2+4x+8\right)\)