HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho \(0\le a\le b\le c\le1\). Tìm max
\(A=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Cho a,b,c>0 t/m \(a^2+b^2+c^2=3\). Tìm max
P\(P=\dfrac{a}{a^2+2b+3}+\dfrac{b}{b^2+2c+3}+\dfrac{c}{c^2+2a+3_{ }}\le\dfrac{1}{2}\)
Cho tam giác ABC nội tiếp (O). Vẽ dây AD // BC.Các tt tại A và B cắt nhau tại E. AC cắt BD tạiI.
1) C/m ABOI nt
2) OI vuông góc EI
3) M e đoạn BE, BD cắt AE tại N. MN cắt AB tại K. C/m KM/KN = BM/AN
Cho (O) và M nằm ngoài, kẻ tt MB,MC. MO cắt BC tại H.
a) M,B,O,C cùng e 1 đg tròn.
b) A e cung BC(lớn)/ AB <AC. AH cắt (O) tại N. C/m OAH đồng dạng OMA và MAON nt
c) Qua A kẻ đg vuông góc BC tại D và cắt (O) tại K. C?m MNK = 90 độ và cho I là trđ NK. C/m MPD= 90 độ
Cho tam giác ABC nhọn. Đg tròn đk BC cắt AB,AC tại E,D. BD cắt CE tại H.AH cắt BC tại F.
a) C/m AF vuông góc BC
b) M là trđ AH. C/m MD vuông góc OD.
c) AH cắt DE tại K. C/m K là trực tâm tam giác MBC.
Cho x,y e R t/m x2+y2=1.
Tìm max \(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)