Từ điểm A ở ngoài đường tròn (O ; R) vẽ hai tiếp tuyến AB, AC (B và C là tiếp điểm) và cát tuyến AMN (M nằm giữa A và N) sao cho cung MBN nhỏ hơn cung MCN. Gọi H là trung điểm của đoạn thẳng MN. Đường thẳng BC cắt đoạn thẳng OA và tia OH thứ tự tại I và L. Chứng minh rằng : b) R2= OH.OL c) MIN = 2.MCN
Cho nửa đường tròn tâm O đường kính AB. Trên nửa đường tròn lấy các điểm E và D khác A, B sao cho E nằm trên cung AD. Gọi H là giao điểm của AD và BE, C là giao điểm AE và BD. M là hình chiếu của H trên AB.
a) Chứng minh tứ giác BDHM là tứ giác nội tiếp.
b) Gọi K là giao điểm của MD và BH, chứng minh BK.HE = BE.HK
c) Gọi I là tâm đường tròn ngoại tiếp tam giác CDE. Chứng minh IE là tiếp tuyến của đường tròn tâm O.