Chủ đề:
Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNHCâu hỏi:
giải hệ pt sau : \(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\end{matrix}\right.\)
a) $\left \{ {{x^{2}+y=5x+ 3} \atop {y^{2}+x=5y+3}} \right.$
b) $\left \{ {{3x^{3}=y^{2}+2} \atop {3y^{3}=x^{2}+2}} \right.$
c) $\left \{ {{x^{4} - 4x^{2} + 4(y-3)^{2}=0} \atop {x^{2}.y + x^{2} + 2y =22}} \right.$
d) $\left \{ {{(x-y)^{2} = 1 - x^{2}.y^{2}} \atop {x(xy + y + 1) = y(xy + 1) +1 }} \right.$
mọi người bt thì giúp mình với ạ . dạng này mình làm mãi nhưng không làm đc :(( mà mai thì nộp rồi
a) $\left \{ {{x^{2}+y=5x+ 3} \atop {y^{2}+x=5y+3}} \right.$
b) $\left \{ {{3x^{3}=y^{2}+2} \atop {3y^{3}=x^{2}+2}} \right.$
c) $\left \{ {{x^{4} - 4x^{2} + 4(y-3)^{2}=0} \atop {x^{2}.y + x^{2} + 2y =22}} \right.$
d) $\left \{ {{(x-y)^{2} = 1 - x^{2}.y^{2}} \atop {x(xy + y + 1) = y(xy + 1) +1 }} \right.$