3x2-5x-6=0
(a=3 ; b = -5 ; c=-6)
Vì a=3 trái dấu với c=-6 nên phương trình co1v 2 nghiệm phân biệt
S= x1+x2=\(\dfrac{-b}{a}\)=\(\dfrac{-\left(-5\right)}{3}\)=\(\dfrac{5}{3}\)
P= x1*x2=\(\dfrac{c}{a}\)=\(\dfrac{-6}{3}\)=-2
A=\(\dfrac{x_1}{x_2}\)-\(\dfrac{2}{x_1^2}\)
A=\(\dfrac{x_1^3\cdot x_2}{x_1^2\cdot x_2^2}-\dfrac{x_2^2+2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x_1^3\cdot x_2-x_2^2-2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x^2_1-x^2_2-2}{x_1\cdot x_2}\)
A=\(\dfrac{\left(x_1+x_2\right)\cdot\left(x_1-x_2\right)-2}{x_1\cdot x_2}\)
A=\(\dfrac{S\cdot\sqrt{S2-4P}-2}{P}\)
(Giải thích thêm x1-x2 = \(\sqrt{S^2-4P}\) vì (x1-x2)^2=x1^2 - 2x1x2 + x2^2=(x1^2+x2^2) -2x1x2 = (S^2-2P)*2P=S^2-4P)
( Công thức x1^2+x2^2 = x1^2 + 2x1x2 + x2^2 -2x1x2 = (x1+x2)^2 - 2x1x2 = S^2 -2P)
Thế vào ta có :
A=\(\dfrac{\dfrac{5}{3}\cdot\sqrt{\left(\dfrac{5}{3}\right)^2-4\cdot\left(-2\right)}-2}{-2}\)
A= \(\dfrac{19-5\sqrt{97}}{18}\)
Vậy giá trị của biểu thức A=\(\dfrac{19-5\sqrt{97}}{18}\)
( chỗ tui không cần kết luận mà bài chỗ bác đẹp y như chỗ tui vậy )