HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành b) Gọi I, J lần lượt là trung điểm của AC và BD. Chứng minh rằng các đoạn thẳng MP, QN, IJ đồng quy tại một điểm.
cho biểu thức A=\(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}+\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)a) Tìm điều kiện xác định và rút gọn Ab) Tìm x để A>0
Cho biểu thức M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x^2.Tính M biết x=(1/2)a+(1/2)b+(1/2)c
Cho hình thang cân ABCD (AB//CD). Đường thẳng qua A vuông góc với AC cắt đường thẳng DC tại E, đường thẳng qua B vuông góc với BC cắt đường thẳng DC tại F.a) Chứng minh rằng: tam giác AEC= tam giác BFDb) Chứng minh rằng ABFE là hình thang cânc) Gọi P là giao điểm của đường thẳng AE và đường thẳng BD. Q là giao điểm của đường thẳng BF và đường thẳng AC. Chứng minh rằng: tam giác APQ= tam giác BQP
Cho hình thang cân ABCD (AB//CD). Trên nửa mặt phẳng bờ CD không chứa điểm B, vẽ tia Cx song song với AD. Trên tia Cx lấy điểm E sao cho CE=AD. M là giao điểm của AE và DC. Trên tia đối của tia MB lấy điểm F sao cho MF = MB. Chứng minh rằng: a) M là trung điểm của DC và AE b) Tứ giác ABEF là hình thang c) Tứ giác DCEF là hình thang cân