Câu trả lời:
a) đk: \(\left\{{}\begin{matrix}\sqrt{x}+1>0\\\sqrt{x}-1>0\\x>0\end{matrix}\right.=>\sqrt{x}>\pm1\)
rút gọn pt
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) \(\dfrac{\left(x^2-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2x+\sqrt{x}\right)\left(\sqrt{x}-1\right)\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}.\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2\left(x-1\right)x\left(x+1\right)}{x\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\)