Câu trả lời:
Trần Như: Nếu gọi 2 số lẻ bất kỳ thì ko gọi là 2a+1 và 2a+3 đc, vì đó chỉ là hai số lẻ liên tiếp thôi. :) Ta trình bày như sau:
Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)
Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)
Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.
Soyeon làm như vậy cũng đc, ta sử dụng đồng dư :)