HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giải phương trình:
a) \(\sqrt{4-3x}=8\)
b) \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
Tính giá trị biểu thức:
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c) \(tan^240^o.sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
Rút gọn:
n) N = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2\)
o) O = \(\left(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{a-b}{\sqrt{a}-\sqrt{ }b}\right)^2\)
p) P = \(\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
q) Q = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\dfrac{x+xy}{1-xy}\)
l) L = \(\left(\dfrac{\sqrt{a}-2}{a-1}-\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right)\left(1+\dfrac{1}{\sqrt{a}}\right)\)
Cho x > 0:
A = \(\dfrac{2+\sqrt{0.25}}{\sqrt{0.25}}\)
B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
Trục căn thức ở mẫu của các biểu thức sau:
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\); \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
Các số sau đây có căn bậc hai không?
a) A = \(\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
b) B = \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
Chứng minh các số sau đây là số nguyên:
b) B = \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
Rút gọn các biểu thức sau ( biết a > 0, b > 0 ):
a) \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)
b) \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3}b\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)