HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh bằng phản chứng.
Giả sử X, Y, Z đồng thời lớn hơn 1
\(a\left(2-b\right)>1\Rightarrow2-b>a\)
\(\Rightarrow\frac{1}{a}+b< 2\)
Tương tự ta có: \(\frac{1}{b}+c< 2;\text{ }\frac{1}{c}+a< 2\)
Cộng ba bất đẳng thức trên lại, ta được \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 6\text{ (1)}\)
Mặt khác, theo bđt Côsi, ta luôn có:
\(a+\frac{1}{a}\ge2;\text{ }b+\frac{1}{b}\ge2;\text{ }c+\frac{1}{c}\ge2\)
\(\Rightarrow a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\text{ (2)}\)
(1) và (2) hoàn toàn mâu thuẩn với nhau, nên điều giả sử sai.
Vậy ta có đpcm.