a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta có AB/BC = DB/CD = AB/BD
hay AD/BC = AB/BD ⇔ 3,5/BC = 2,5/5
➩ BC= 3,5 . 5/2,5 = 7 (cm)
ta lại có: DB/CD = AB/BD ⇔ 5/CD = 2,5/5
==> CD = 5.5/2,5 =10 (cm)
c) Từ (1) ta được:
AD/BC = DB/CD = AB/BD
hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng dạng với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)2 = 1/4