a) Tam giác ABC có 2 trung tuyến BE và CF cắt nhau tại G
=> G là trọng tâm tam giác => G thuộc trung tuyến AD Hay A; G; D thẳng hàng
b) +) Chứng minh được : góc BAD > DAC (xem phần sau)
Trong tam giác ABC có AB < AC nên góc ACB < ABC
=> góc BAD + ABC > góc DAC + ACB
=> 180o - (BAD + ABC) < 180o - (DAC + ACB)
=> góc D1 < D2
+) Từ D1 < D2 => BG < CG (xem phần sau)
Theo tính chất trung tuyến BG = 1/3 BE ; CG = 2/3 CF
=> BE < CF
c)
+) Theo câu b ta có: BE < CF => BE < CF + AD (1)
+) Lấy I thuộc tia GD sao cho D là trung điểm của GI => AG = GI = 2GD
Dễ có: tam giác BDI = CDG (do BD = CD; góc BDI = CDG; DI = GD)
=> BI = CG
Trong tam giác BGI có: GI < BG + BI Mà GI = AG ; BI = CG
=> AG < BG + CG => 2/3 AD < 2/3BE + 2/3CF
=> AD < BE + CF (2)
Tương tự, ta có: CF < AD + BE (3)
Từ (1)(2)(3) => AD; BE; CF thỏa mã các bất đẳng thức tam giác