Câu trả lời:
Ta chuyển vế rồi quy đồng vế phải:
a/(b-c)=-(ab-b2+c2-ac)/(c-a)(a-b) (1)
b/(c-a)=-(a2-ab+bc-c2)/(b-c)(a-b) (2)
c/(a-b)=-(b2-bc+ac-a2)/(c-a)(b-c) (3)
Ta phân tích phần phải chứng minh:
a/(b-c)2+b/(c-a)2+c/(a-b)2=a/(b-c)x1/(b-c)+b/(c-a)x1/(c-a)+c/(a-b)x1/(a-b)
Thay lần lượt (1) (2) (3) vào ta đc: -(ab-b2+c2-ac)/(c-a)(a-b)(b-c)-(a2-ab+bc-c2)/(b-c)(a-b)(c-a)-(b2-bc+ac-a2)/(c-a)(b-c)(a-b)
Ta thấy biểu thức trên có cùng mẫu nên ta cộng tất cả tử số :
=(-ab+b2-c2+ac-a2+ab-ac+c2-b2+bc-ac+a2)/(c-a)(b-c)(a-b)
=0/(c-a)(b-c)(a-b)
=0 =>đpcm