HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b (a<b) được tính theo công thức:
Tập xác định hàm số y = 1 - cos x sin x - 1 là:
Tính diện tích mặt cầu ngoại tiếp một hình chóp tứ giác đều có cạnh bên bằng 2 và cạnh đáy bằng 1
A. 32 π 7
B. 8 π 7
C. 128 π 21 14
D. 16 π 14
Cho mặt cầu (S) bán kính R=5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 πcm . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Nghiệm của phương trình cos x + π 4 = 2 2 là