\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
\(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0187u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0187.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,605MeV.\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1,0073.K_p}{2.2.4,0015.K_{He}} \)
=> \(\alpha \approx 167^031'\).