Từ điểm P nằm ngoài đường tròn (O) vẽ 2 tiếp tuyến PM và PN với (O) , ( M,N là 2 tiếp điểm vẽ dây cung MQ song song với PN ; PQ cắt đường tròn (O) tại điểm thứ 2 là A ( A khác Q ) . a) chứng minh tứ giác PMON nội tiếp được trong 1 đường tròn. b) chứng minh PN2 = PA × PQ c) tia MA cắt PN tại K . Chứng minh K là trung điểm của NP .