HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
chứng minh
\(\dfrac{a}{a^2+1}+\dfrac{5\left(a^2+1\right)}{2a}\ge\dfrac{11}{2}\) ∀a > 0
viết thuật toán dựa trên 1 bài toán cụ thể
nêu cơ sở di truyền của công tác khảo nghiệm đối với một giống mới
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
\(\dfrac{x^2-\left(3m-1\right)}{x-2}=2m+1\)
xã định m để phương trình có 2 nghiệm phân biệt khác nhau