Chủ đề:
Ôn thi vào 10Câu hỏi:
1giải phương trình 9x4 +8x2-1=0
2 cho pt :x2 -(m-1)x-m2 +m-1=0
a) CMT phương trình luôn có 2 nghiệm phân biệt với x1,x2 với mọi m
Một ô tô đi từ A đến B cách nhau 60km trong một thời gian quy định. Trên nửa quảng đường đầu, ô tô đi với vận tốc kém vận tốc dự định mỗi giờ 6km. Trên nửa quãng đường sau, ô tô đi với vận tốc lớn hơn vận tốc dự định mỗi giờ 10km. Vì vậy, ô tô đến B đúng giờ quy định. Tính thời gian quy định để ô tô đi từ A đến B.
: Cho đường tròn (O) bán kính R và một dây BC cố định. Gọi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
1) Chứng minh AMD=ABC và MA là tia phân giác của góc BMD.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.
1. Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình:
Một công nhân dự định làm 150 sản phẩm trong một thời gian nhất định. Sau khi làm được 2h với năng xuất dự kiến, người đó đã cải tiến các thao tác nên đã tăng năng xuất được 2 sản phẩm mỗi giờ và vì vậy đã hoàn thành 150 sản phẩm sớm hơn dự kiến 30 phút. Hãy tính năng xuất dự kiến ban đầu.
Cho hai đường tròn (O) và(O')cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và (O)'.
1. Chứng minh ba điểm C, B, D thẳng hàng.
2. Đường thẳng AC cắt đường tròn(O')tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn.
3. Chứng minh tia BA là tia phân giác của góc EBF