Cho △ABC có AB = AC, tia phân giác của BAC cắt BC tại D.
a/ Chứng minh : △ABD = △ACD. Từ đó suy ra AD ⊥ BC.
b/ Kẻ BE ⊥ AC (E ∈ AC). Trên cạnh AB lấy điểm F sao cho AE = AF. Chứng minh : △AEB = △AFC. Từ đó suy ra CF ⊥ AB.
c/ BE cắt AD tại H. Chứng minh \(\widehat{AFH}\) = 90°. Từ đó suy ra ba điểm C, H, F thẳng hàng.