) Cho đường tròn (O;R) có đường kính AB và C là điểm thuộc (O) (C không trùng với A và B, CA > CB).Vẽ đường thẳng d là tiếp tuyến của (O) tại B. a) Gọi M là trung điểm của AC. Vẽ CH ⊥ AB tại H .Chứng minh: O, M, C, H cùng nằm trên một đường tròn . Xác định tâm I của đường tròn này. b) Tia AC cắt d tại E .Chứng minh EC.EA = EO2 – R 2 c) Gọi N là trung điểm CH ; tia AN cắt d tại F . Chứng minh FC là tiếp tuyến của đường tròn (I).