HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) x^2+ 2x + 1
= x^2+2.x.1+1^2
=(x+1)^2 b) x^2 + 6x + 9
= x^2+2.x.3+3^2
=(x+3)^2 c) x^2 - 6x +9
=x^2-2.x.3+3^2
=(x-3)^2 d) x^2 - 2x + 1
=x^2-2.x.1+1^2
=(x-1)^2 e) 4x^2 + 4xy + y^2
=(2x)^2+2.2x.y+y^2
=(2x+y)^2
a) x^2 - x = x - 1
\(x^2-x-\left(x-1\right)=0\)
\(x^2-2.x.1+1^2=0\)
\(\left(x-1\right)^2=0=>x-1=0=>x=1\) b) (x^2 - 36) - (x+6) = 0
=> \(\left(x^2-6^2\right)-\left(x+6\right)=0\)
=> (x+6)(x-6) -(x+6) =0
=> (x-6)(x+6-1) =0
=> (x-6)(x+5)=0
=> x=6 hoặc x= (-5) c) (2x-1)^2 - (4x^2 - 1)= 0
=> \(\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
=>\(\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)
=> (2x-1)(2x-1-2x-1)=0
=> (2x-1)(-2)=0
=> 2x-1=0 => 2x=1 => x= \(\dfrac{1}{2}\) d) x^2(x^2 - 4) - (x^2 - 4 ) = 0
\(\left(x^2-2^2\right)\left(x^2-1\right)=0\)
(x-2)(x+2)(x-1)(x+1)=0
=> x=2;-2;1 hoặc (-1)
a) x^2 + 2x + 1
=\(x^2+2.x.1+1^2\)
\(=\left(x+1\right)^2\) b) x^2 + 6x + 9
=\(x^2+2.x.3+3^2\)
\(=\left(x+3\right)^2\) c) x^2 - 6x + 9
\(=x^2-2.x.3+3^2\)
=\(\left(x-3\right)^2\) d) x^2 - 2x + 1
\(=x^2-2.x.1+1^2\)
\(=\left(x-1\right)^2\) e ) 4x^2 + 4xy +y^2
\(=\left(2x\right)^2+2.2x.y+y^2\)
\(=\left(2x+y\right)^2\) f) x^2 + 4xy + 4y^2
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
b,\(x^2-10x=-25\)
=> \(x^2-2.x.5+5^2=0\)
=> \(\left(x-5\right)^2=0=>x-5=0=>x=5\)
a, \(x^3-0,25x=0\)
\(x\left(x^2-0,25\right)=0\)
\(x\left(x-0,5\right)\left(x+0,5\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-0,5=0\\x+0,5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=0,5\\x=\left(-0,5\right)\end{matrix}\right.\)
x(x-10)=(-25)
\(\left[{}\begin{matrix}x=0\\x-10=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^2-x^2+1^2\right)=\left(x^2+1\right)\)
\(9^2-\left(3x+2\right)^2=\left(9-3x-2\right)\left(9+3x+2\right)=\left(7-3x\right)\left(11+3x\right)\)
Ta có :
\(\left(x-y\right)^3=2^3=8\)
=> \(x^3-2x^2y+2x^2y-y^3=8\)
=>\(x^3-y^3-2xy\left(x-y\right)=8\)
=>\(x^3-y^3-2.48.2=8\)
=>\(x^3-y^3-192=8=>x^3-y^3=200\)
Vậy ...
A=9 rồi kìa
Xem lại đề bài bạn ơi
b, \(\left(x-2\right)^2-x^2+4=0\)
=> \(\left(x-2-x\right)\left(x-2+x\right)+4=0\)
=> (-2)(2x-2)+4=0
=> -4x+4+4=0
=> 8-4x=0
=> 4(2-x)=0
=> 2-x=0=> x=2
Vậy x=2