Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}x + y > 2\\x - y \le 1\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?
A. (1;1)
B. (2;0)
C. (3;2)
D. (3;-2)
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}x + y > 2\\x - y \le 1\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?
A. (1;1)
B. (2;0)
C. (3;2)
D. (3;-2)
Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3\)?
A. Vô số
B. 1
C. 2
D. 3
Thảo luận (1)Hướng dẫn giảiGọi G là trọng tâm của tam giác ABC, ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {MG} \)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3 \Leftrightarrow \left| {3\overrightarrow {MG} } \right| = 3\) hay \(MG = 1\)
Vậy tập hợp các điểm M thỏa mãn là đường tròn tâm G, bán kính 1.
Nói cách khác có vô số điểm M thỏa mãn ycbt.
Chọn A.
(Trả lời bởi Hà Quang Minh)
Biết rằng parabol \(y = {x^2} + bx + c\) có đỉnh I(1;4). Khi đó giá trị của \(b + c\) là:
A. 1
B. 2
C. 3
D. 4
Thảo luận (1)Hướng dẫn giảiParabol có đỉnh I(1;4) hay I(1;4) thuộc parabol
\( \Rightarrow 4 = {1^2} + 1.b + c \Leftrightarrow b + c = 3\)
Chọn C.
(Trả lời bởi Hà Quang Minh)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x + 2y - 5 = 0\). Tìm mệnh đề sai trong các mệnh đề sau:
A. Vecto \(\overrightarrow n = (1;2)\) là một vecto pháp tuyến của \(\Delta \)
B. Vecto \(\overrightarrow u = ( - 2;1)\) là một vecto chỉ phương của \(\Delta \)
C. Đường thẳng \(\Delta \) song song với đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - 2t\\y = 1 + t\end{array} \right.\)
D. Đường thẳng \(\Delta \)có hệ số góc \(k = 2\)
Thảo luận (1)Hướng dẫn giảiXét đường thẳng \(\Delta :x + 2y - 5 = 0\)
Vecto \(\overrightarrow n = (1;2)\) là một VTPT của \(\Delta \) => A đúng => Loại A
Vecto \(\overrightarrow u = ( - 2;1)\) là một VTCP của \(\Delta \) => B đúng => Loại B
Đường thẳng \(\Delta \)có hệ số góc \(k = - \frac{a}{b} = - \frac{1}{2}\) => D sai => Chọn D
Chọn D.
(Trả lời bởi Hà Quang Minh)
Trongg khai triển nhị thức Newton của \({(2 + 3x)^4}\), hệ số của \({x^2}\) là:
A. 9
B. \(C_4^2\)
C. \(9C_4^2\)
D. \(36C_4^2\)
Thảo luận (1)Hướng dẫn giảiTa có:
\({(2 + 3x)^4} = C_4^0{2^4} + C_4^1{2^3}3x + C_4^2{2^2}{\left( {3x} \right)^2} + C_4^32.{\left( {3x} \right)^3} + C_4^4{\left( {3x} \right)^4}\)
=> Hệ số của của \({x^2}\)là \(C_4^2{.2^2}{.3^2} = 36C_4^2.\)
Chọn D.
(Trả lời bởi Hà Quang Minh)
Một tổ gồm 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Xác suất để trong hai người được chọn có ít nhất một nữ là:
A. \(\frac{7}{{15}}\)
B. \(\frac{8}{{15}}\)
C. \(\frac{1}{{15}}\)
D. \(\frac{2}{{15}}\)
Thảo luận (1)Hướng dẫn giảiSố cách chọn 2 bạn bất kì trong 10 bạn đó là \(C_{10}^2\)
Cách 1:
Trường hợp 1: Hai bạn được chọn gồm 1 nam và 1 nữ
Có 7 cách chọn một bạn nam
Có 3 cách chọn một bạn nữ
=> Có 3.7 =21 cách chọn
Trường hợp 2: Hai bạn được chọn đều là nữ
Số cách chọn 2 trong 3 bạn nữ là: \(C_3^2\)
=> Xác suất để trong hai người được chọn có ít nhất một nữ là: \(\frac{{21 + C_3^2}}{{C_{10}^2}} = \frac{8}{{15}}\)
Chọn B.
Cách 2:
Gọi A là biến cố: “trong hai người được chọn có ít nhất một nữ”
Biến cố đối \(\overline A \): “trong hai người được không có bạn nữ nào” hay “hai người được chọn đều là nam”
Ta có: Số cách chọn 2 trong 7 bạn nam là \(n(\overline A ) = C_7^2\)
\(\begin{array}{l} \Rightarrow P(\overline A ) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{{21}}{{45}} = \frac{7}{{15}}\\ \Rightarrow P(A) = 1 - P(\overline A ) = 1 - \frac{7}{{15}} = \frac{8}{{15}}\end{array}\)
Chọn B.
(Trả lời bởi Hà Quang Minh)
Cho các mệnh đề:
P: “Tam giác ABC là tam giác vuông tại A”
Q: “Tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
a) Hãy phát biểu các mệnh đề: \(P \Rightarrow Q,Q \Rightarrow P,P \Leftrightarrow Q,\overline P \Rightarrow \overline Q .\) Xét tính đúng sai của các mệnh đề này.
b) Dùng các khái niệm “điều kiện cần” và “điều kiện đủ” để diễn tả mệnh đề \(P \Rightarrow Q\)
c) Gọi X là tập hợp các tam giác ABC vuông tại A, Y là tập hợp các tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\). Nêu mối quan hệ giữa hai tập hợp X và Y.
Thảo luận (1)Hướng dẫn giảia)
\(P \Rightarrow Q\): “Nếu tam giác ABC là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
Mệnh đề này đúng.
\(Q \Rightarrow P\): “Nếu tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) thì tam giác ABC vuông tại A”
Mệnh đề này đúng.
\(P \Leftrightarrow Q\): “Tam giác ABC là tam giác vuông tại A khi và chỉ khi các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
Mệnh đề này đúng do các mệnh đề \(P \Rightarrow Q,Q \Rightarrow P\)đều đúng.
\(\overline P \Rightarrow \overline Q \): “Nếu tam giác ABC không là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} \ne B{C^2}\)”
Mệnh đề này đúng.
b) Mệnh đề \(P \Rightarrow Q\) có thể phát biểu là:
“Tam giác ABC là tam giác vuông tại A là điều kiện đủ để tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
“Tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) là điều kiện cần để tam giác ABC vuông tại A”
c)
X là tập hợp các tam giác ABC vuông tại A.
Y là tập hợp các tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\).
Dễ thấy: \(X \subset Y\) do các tam giác ABC vuông thì đều có trung tuyến \(AM = \frac{1}{2}BC\).
Ta chứng minh: Nếu tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\) thì tam giác ABC vuông tại A.
Thật vậy, \(BM = MC = AM = \frac{1}{2}BC\) suy ra M là tâm đường tròn đường kính BC, ngoại tiếp tam giác ABC.
\( \Rightarrow \widehat {BAC} = {90^ \circ }\) (góc nội tiếp chắn nửa đường tròn)
Vậy tam giác ABC là tam giác vuông.
Do đó \(Y \subset X\)
Vậy \(X = Y\)
(Trả lời bởi Hà Quang Minh)
a) Biểu diễn miền nghiệm D của bất phương trình bậc nhất hai ẩn sau:
\(\left\{ \begin{array}{l}x - y \le 6\\2x - y \le 2\\x \ge 0\\y \ge 0\end{array} \right.\)
b) Từ kết quả câu a, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F(x;y) = 2x + 3y\) trên miền D.
Thảo luận (1)Hướng dẫn giải+ Biểu diễn miền nghiệm của BPT \(x - y \le 6\)
Bước 1: Vẽ đường thẳng \(d:x - y = 6\) trên mặt phẳng tọa độ Õy
Bước 2: Lấy O(0;0) không thuộc d, ta có: \(0 - 0 = 0 \le 6\) => điểm O(0;0) thuộc miền nghiệm
=> Miền nghiệm của BPT \(x - y \le 6\) là nửa mp bờ d, chứa gốc tọa độ.
+ Tương tự, ta có miền nghiệm của BPT \(2x - y \le 2\) là nửa mp bờ \(d':2x - y = 0\), chứa gốc tọa độ.
+ Miền nghiệm của BPT \(x \ge 0\) là nửa mp bên phải Oy (tính cả trục Oy)
+ Miền nghiệm của BPT \(y \ge 0\) là nửa mp phía trên Ox (tính cả trục Ox)
Biểu diễn trên cùng một mặt phẳng tọa độ và gạch bỏ các miền không là nghiệm của từng BPT, ta được:
Miền nghiệm của hệ bất phương trình đã cho là miền tứ giác OABC (miền không bị gạch) với \(A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\)
b)
Thay tọa độ các điểm \(O(0;0),A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\) và biểu thức \(F(x;y) = 2x + 3y\) ta được:
\(\begin{array}{l}F(0;0) = 2.0 + 3.0 = 0\\F(0;6) = 2.0 + 3.6 = 18\\F(\frac{8}{3};\frac{{10}}{3}) = 2.\frac{8}{3} + 3.\frac{{10}}{3} = \frac{{46}}{3}\\F(1;0) = 2.1 + 3.0 = 2\end{array}\)
\( \Rightarrow \min F = 0\), \(\max F = 18\)
Vậy trên miền D, giá trị nhỏ nhất của F bằng 0, giá trị lớn nhất của F bằng \(18\).
(Trả lời bởi Hà Quang Minh)
Cho hàm số \(y = f(x) = a{x^2} + bx + c\) với đồ thị là parabol (P) có đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\) và đi qua điểm \(A(1;2)\)
a) Biết rằng phương trình của parabol có thể viết dưới dạng \(y = a{(x - h)^2} + k\), tron đó I(h;k) là tọa độ đỉnh của parabol. Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.
b) Từ parabol (P) đã vẽ ở câu a, hãy cho biết khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f(x)\)
c) Giải bất phương trình \(f(x) \ge 0\)
Thảo luận (1)Hướng dẫn giảia) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.
\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)
(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)
\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)
Vậy parabol đó là \(y = {x^2} - 5x + 6\)
b) Vẽ parabol \(y = {x^2} - 5x + 6\)
+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)
+ Giao với Oy tại điểm \((0;6)\)
+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)
+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)
b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)
c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)
Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)
Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Cách 2:
\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)
Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)
Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)
(Trả lời bởi Hà Quang Minh)
Giải các phương trình chứa căn thức sau:
a) \(\sqrt {2{x^2} - 6x + 3} = \sqrt {{x^2} - 3x + 1} \)
b) \(\sqrt {{x^2} + 18x - 9} = 2x - 3\)
Thảo luận (1)Hướng dẫn giảia) Bình phương hai vế của phương trình ta được:
\(2{x^2} - 6x + 3 = {x^2} - 3x + 1\)
Sau khi thu gọn ta được: \({x^2} - 3x + 2 = 0\). Từ đó tìm được \(x = 1\) hoặc \(x = 2\)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 2\) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 2\)
b) Bình phương hai vế của phương trình ta được:
\({x^2} + 18x - 9 = 4{x^2} - 12x + 9\)
Sau khi thu gọn ta được: \(3{x^2} - 30x + 18 = 0\). Từ đó tìm được \(x = 5 + \sqrt {19} \) hoặc \(x = 5 - \sqrt {19} \)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 5 + \sqrt {19} \) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 5 + \sqrt {19} \)
(Trả lời bởi Hà Quang Minh)