Luyện tập chung

Nội dung lý thuyết

Một số ví dụ

Ví dụ 1. Tính giá trị của biểu thức

a)  \(200+\left[\left(3^4-24\right)+12^0.3\right]-14.2^2\);

b) \(220-8^2+45:3^2\);

c) \(125:5+28.11^0\).

Giải:

a) \(200+\left[\left(3^4-24\right)+12^0.3\right]-14.2^2\)

 \(=200+\left[\left(81-24\right).1.3\right]-14.4\\ =200+171-56\\ =371-56=315.\)

Vậy biểu thức có giá trị bằng 315.

b)  \(220-8^2+45:3^2\)

\(=220-64+45:9\)

\(=156+5\)

\(=161.\)

Vậy biểu thức có giá trị bằng 161.

c) \(125:5+28.11^0\)

\(=25+28.1\)

\(=25+28=53\).

Vậy biểu thức có giá trị bằng 53.

Ví dụ 2. Tìm \(x\), biết:

a)  \(2x-3.5^2=45:\left(41-5.2^3\right)\);

b) \(56-x=\left\{128-\left[110:\left(2^3.17-9^2\right)\right]\right\}:3^2\);

c) \(2x+2.5^2=231:3^1+121:11\).

Giải:

a) \(2x-3.5^2=45:\left(41-5.2^3\right)\)

\(2x-3.25=45:\left(41-40\right)\)

\(2x-75=45\)

\(2x=45+75\)

\(x=\dfrac{45+75}{2}\)

\(x=60\).

b) \(56-x=\left\{128-\left[110:\left(2^3.17-9^2\right)\right]\right\}:3^2\)

\(56-x=\left\{128-\left[110:\left(8.17-81\right)\right]\right\}:9\)

\(56-x=\left\{128-\left[110:55\right]\right\}:9\)

\(56-x=\left\{128-2\right\}:9\)

\(56-x=126:9\)

\(56-x=14\\ x=56-14\\ x=42.\)

c) \(2x+2.5^2=231:3^1+121:11\)

\(2x+2.25=231:3+11\\ 2x+50=77+11\\ 2x+50=88\\ 2x=38\\ x=19.\)

Ví dụ 3. Viết kết quả các phép tính sau dưới dạng một lũy thừa.

a) \(5^6:5^2\);

b) \(10^5.125.8\);

c) \(7^5.7^3:7^4\).

Giải:

a) \(5^6:5^2=5^{6-2}=5^4.\)

b) \(10^5.125.8=10^5.1000=10^5.10^3=10^{5+3}=10^8\).

c) \(7^5.7^3:7^4=7^{5+3}:7^4=7^8:7^4=7^{8-4}=7^4\).

Ví dụ 4. Viết biểu thức tính diện tích toàn phần của hình hộp chữ nhật sau theo a, b và c. Tính giá trị của biểu thức đó khi a = 6 cm; b = 10 cm; c = 5 cm.

Giải:

Diện tích toàn phần của hình chữ nhật là: 2bc + 2ac + 2ab (cm2).

Khi a = 6 cm; b = 10 cm; c = 5 cm ta có diện tích toàn phần là: 

2.10.5 + 2.6.5 + 2.6.10 = 280 (cm2).

​@919158@@919239@@919311@