Luyện tập chung trang 74

Bài 4.16 (SGK Kết nối tri thức với cuộc sống trang 74)

Hướng dẫn giải

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4.17 (SGK Kết nối tri thức với cuộc sống trang 74)

Hướng dẫn giải

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\( \Rightarrow \Delta ABC{\rm{  = }}\Delta DEF\)(g.c.g)

\( \Rightarrow DF = AC\)( 2 cạnh tương ứng)

Mà AC = 6 cm

\( \Rightarrow DF = 6cm\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4.18 (SGK Kết nối tri thức với cuộc sống trang 74)

Hướng dẫn giải

a)Xét hai tam giác AEC và AED có

\(EC = ED\)

\(\widehat {CEA} = \widehat {DEA}\)

AE chung

\( \Rightarrow \Delta AEC{\rm{  =  }}\Delta AED\)(c.g.c)

b)

Do \(\Delta AEC{\rm{  =  }}\Delta AED\) nên \(\widehat {CAE} = \widehat {DAE}\) ( 2 góc tương ứng) và AC=AD ( 2 cạnh tương ứng).

Xét \(\Delta ABC\) và \(\Delta ABD\) có:

AB chung

\(\widehat {CAE} = \widehat {DAE}\)

AC=AD

\( \Rightarrow \Delta ABC = \Delta ABD\)(c.g.c)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4.19 (SGK Kết nối tri thức với cuộc sống trang 74)

Hướng dẫn giải

a) Trong \(\Delta OAC\) có: \(\widehat {AOC}+\widehat {OAC}+\widehat {OCA}=180^0\)

Trong \(\Delta OBC\) có: \(\widehat {BOC}+\widehat {OBC}+\widehat {OCB}=180^0\)

Mà \(\widehat {AOC} = \widehat {BOC}\)(do Oz là phân giác góc xOy) và \(\widehat {CAO}=\widehat {CBO}\) 

Do đó, \(\widehat {OCA}=\widehat {OCB}\).

Xét \(\Delta OAC\) và \(\Delta OBC\) có:

\(\widehat {AOC} = \widehat {BOC}\) (cmt)

OC chung

\(\widehat {OCA} = \widehat {OCB}(cmt)\)

\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)

b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)

Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù

    \(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù

Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)

Xét \(\Delta MAC\) và \(\Delta MBC\) có:

AC=BC (cmt)

\(\widehat {ACM} = \widehat {BCM}\) (cmt)

CM chung

\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)