Một hộp chứa 10 tấm thẻ cùng loại được đánh số từ 4 đến 13. Hà lấy ra ngẫu nhiên 1 thẻ từ hộp. Xác suất để thẻ chọn ra ghi số nguyên tố là
A. 0,2.
B. 0,3.
C. 0,4 .
D. 0,5.
Một hộp chứa 10 tấm thẻ cùng loại được đánh số từ 4 đến 13. Hà lấy ra ngẫu nhiên 1 thẻ từ hộp. Xác suất để thẻ chọn ra ghi số nguyên tố là
A. 0,2.
B. 0,3.
C. 0,4 .
D. 0,5.
Một hộp chứa các thẻ màu xanh và thr màu đỏ có kích thước và khối lượng như nhau. Thọ lấy ra ngẫu nhiên 1 thẻ từ hộp, xem màu rồi trả lại hộp. Lặp lại thử nghiệm đó 50 lần. Thọ thấy có 14 lần lấy được thẻ màu xanh. Xác suất thực nghiệm của biến cố “Lấy được thẻ màu đỏ” là
A. 0,14.
B. 0,28.
C. 0,72.
D. 0,86.
Thảo luận (1)Hướng dẫn giảiĐáp án đúng là C
Số lần lấy được thẻ màu đỏ là \(50 - 14 = 36\) (lần)
Xác suất thực nghiệm của biến cố “Lấy được thẻ màu đỏ” là \(\frac{{36}}{{50}} = 0,72\)
(Trả lời bởi Hà Quang Minh)
Tỉ lệ học sinh bị cận thị ở một trường trung học cơ sở là \(16\% \). Gặp ngẫu nhiên một học sinh của trường, xác suất học sinh đó không bị cận thị là
A. 0,16.
B. 0,94.
C. 0,84.
D. 0,5.
Thảo luận (1)Hướng dẫn giảiĐáp án đúng là C
Giả sử trường đó có 100 học sinh. Khi đó, số học sinh bị cận chiếm \(16\% \) nên sẽ có khoảng 16 học sinh. Số học sinh không bị cận thị là \(100 - 16 = 84\) (học sinh).
Xác suất gặp ngẫu nhiên một bạn học sinh không bị cận thị là:
\(\frac{{84}}{{100}} = 0,84\)
(Trả lời bởi Hà Quang Minh)
Vinh gieo 3 con xúc xắc cân đối và đồng chất. Xác suất của biến cố “Tích số chấm xuất hiện trên ba con xúc xắc bằng 28” là
A. 0.
B. \(\frac{1}{{36}}\).
C. \(\frac{1}{{18}}\).
D. \(\frac{1}{{12}}\).
Thảo luận (1)Hướng dẫn giảiĐáp án đúng là A
Ta có: \(28 = 4.7.1 = 2.2.7\).
Qua cách phân tích trên ta thấy để xuất hiện tích 3 con xúc xắc là 28 thì phải có 1 con có mặt 7. Mà con xúc xắc không có mặt 7. Do đó, biến cố trên không xảy ra.
Vậy xác suất của biến cố “Tích số chấm xuất hiện trên ba con xúc xắc bằng 28” là 0.
(Trả lời bởi Hà Quang Minh)
Thủy gieo một con xúc xắc cân đối 1000 lần. Số lần xuất hiện mặt 6 chấm trong 1000 lần gieo đó có khả năng lớn nhất thuộc vào tập hợp nào sau đây?
A. {0; 1; …; 100}.
B. {101; 102; …; 200}.
C. {201; 202; …; 300}.
C. {301; 302; … ; 400}.
Thảo luận (1)Hướng dẫn giảiĐáp án dúng là B
Xác xuất lí thuyết khi gieo một con xúc xắc để xuất hiện mặt 6 chấm là \(\frac{1}{6}\).
Gọi số lần xuất hiện mặt 6 khi gieo con xúc xắc là \(N\).
Xác suất thực nghiệm của việc gieo con xúc xắc 1000 lần là \(\frac{N}{{1000}}\).
Vì số lần gieo là lớn nên \(\frac{N}{{1000}} \approx \frac{1}{6} \Rightarrow N \approx 1000:6 \approx 167\).
Vậy số lần xuất hiện mặt 6 chấm trong 1000 lần gieo đó có khả năng lớn nhất thuộc vào tập hợp {101; 101; …; 200}.
(Trả lời bởi Hà Quang Minh)
Một hộp chứa 6 tấm thẻ cùng loại được đánh số lần lượt là 2; 3; 5; 8; 13; 32. Lấy ra ngẫu nhiên 1 thẻ từ hộp. Tính xác suất của các biến cố:
\(A\): “Số ghi trên thẻ là số chẵn”.
\(B\): “Số ghi tren thẻ là số nguyên tố”.
\(C\): “Số ghi trên thẻ là số chính phương”.
Thảo luận (1)Hướng dẫn giải- Các tấm thẻ được đánh số chẵn là: thẻ số 2; thẻ số 8; thẻ số 32.
Xác suất để biến cố \(A\) xảy ra là \(\frac{3}{6} = \frac{1}{2}\)
- Các tấm thẻ được đánh số nguyên tố là: thẻ số 2; thẻ số 3; thẻ số 5; thể số 13.
Xác suất để biến cố \(B\) xảy ra là \(\frac{4}{6} = \frac{2}{3}\)
- Không có tấm thẻ nào được đánh số chính phương.
Do đó, xác suất để biến cố \(C\) xảy ra bằng 0.
(Trả lời bởi Hà Quang Minh)
Một túi đựng 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi trắng và 1 viên bi vàng có cùng kích thước và khối lượng. Lấy ngẫu nhiên 2 viên bi từ túi. Tính xác suất của các biến cố:
\(A\): “Trong hai viên bi lấy ra có 1 viên bi màu đỏ”;
\(B\): “Hai viên bi lấy ra đều không có màu trắng”.
Thảo luận (1)Hướng dẫn giảia) Cách lấy 2 viên bi trong túi là:
Xanh – đỏ; Xanh – trắng; Xanh – vàng; Đỏ - trắng; Đỏ - vàng; Trắng – vàng.
Có 6 cách lấy hai biên bi từ trong túi.
Biến cố \(A\) xảy ra khi 2 viên bi lấy ra có 1 viên bi màu đỏ
Có 3 kết quả thuận lợi cho biến cố \(A\) là Xanh – đỏ; Đỏ - trắng; Đỏ - vàng
Xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{1}{2}\).
b) Biến cố \(B\) xảy ra khi 2 viên bi lấy ra đều không có màu trắng
Có 3 kết quả thuận lợi cho \(B\) là : Xanh – đỏ; Xanh – vàng; Đỏ - vàng.
Xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{1}{2}\).
(Trả lời bởi Hà Quang Minh)
Tỉ lệ vận động viên đạt huy chương trong một đại hội thể thao là 21%. Gặp ngẫu nhiên một vận động viên dự đại hội. Tính xác suất của biến cố vận động viên ấy đạt huy chương.
Thảo luận (1)Hướng dẫn giảiGiả sử có 100 vận động viên tham gia đại hội thể thao. Khi đó, số vận động viên đạt huy chương là \(100.21\% = 21\)(vận động viên)
Khi đó, gặp ngẫu nhiên một vận động viên thì xác suất vận động viên đó là vận động viên đạt huy chương là \(\frac{{21}}{{100}}\).
Vậy xác suất gặp được vận động viên đạt huy chương là \(\frac{{21}}{{100}}\).
(Trả lời bởi Hà Quang Minh)
Thảo tung hai đồng xu giống nhau 100 lần và ghi lại kết quả ở bảng sau:
Tính xác suất thực nghiệm của biến cố “Hai đồng xu đều xuất hiện mặt sấp sau 100 lần tung”.
Thảo luận (1)Hướng dẫn giảiXác suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{{14}}{{100}} = \frac{7}{{50}}\).
Vậy suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{7}{{50}}\).
(Trả lời bởi Hà Quang Minh)
Xuân bỏ một số viên bi xanh và đỏ có kích thước và khối lượng giống nhau vào túi. Mỗi lần Xuân lấy ra ngẫu nhiên 1 viên bi, xem màu của nó rồi trả lại túi. Lặp lại phép thử đó 100 lần, Xuân thấy có 40 lần mình lấy được bi đỏ. Biết rằng trong túi có 9 viên bi xanh, hãy ước lượng xem trong túi có bao nhiêu viên bi đỏ.
Thảo luận (1)Hướng dẫn giảiGọi số viên bi đỏ trong túi là \(N\). Khi đó tổng số viên bi trong túi là \(N + 9\).
Xác suất lí thuyết của biến cố lấy được viên bi đỏ là \(\frac{N}{{N + 9}}\)
Vì sau 100 lần lấy bi thì có 40 lần được bi đỏ nên xác suất thực nghiệm là \(\frac{{40}}{{100}} = \frac{2}{5}\)
Vì số lần lấy bi là lớn nên
\(\frac{N}{{N + 9}} \approx \frac{2}{5} \Leftrightarrow 2.\left( {N + 9} \right) \approx 5N \Leftrightarrow 5N \approx 2N + 18 \Leftrightarrow 3N \approx 18 \Leftrightarrow N \approx 6\)
Vậy trong túi có khoảng 6 viên bi đỏ.
(Trả lời bởi Hà Quang Minh)