Cho hai bộ ba thanh tre nhỏ có độ dài như sau:
Bộ thứ nhất: 10 cm, 20 cm, 25 cm.
Bộ thứ hai: 5 cm, 15 cm, 25 cm.
Em hãy ghép và cho biết bộ nào ghép được thành một tam giác.
Cho hai bộ ba thanh tre nhỏ có độ dài như sau:
Bộ thứ nhất: 10 cm, 20 cm, 25 cm.
Bộ thứ hai: 5 cm, 15 cm, 25 cm.
Em hãy ghép và cho biết bộ nào ghép được thành một tam giác.
Với bộ ba thanh tre ghép lại được thành một tam giác trong HĐ1, em hãy so sánh độ dài của thanh tre bất kì với tổng độ dài 2 thanh còn lại.
Thảo luận (1)Hướng dẫn giảiTa có: 10 + 20 = 30 > 25
10 + 25 = 35 > 20
20 + 25 = 45 > 10
Vậy độ dài của thanh tre bất kì luôn nhỏ hơn tổng độ dài 2 thanh còn lại.
(Trả lời bởi Hà Quang Minh)
Ý kiến của em thì sao?
Thảo luận (1)Hướng dẫn giảiVì 1+ 2 < 4 nên bộ ba đoạn thẳng không lập được thành 1 tam giác.
Vậy Vuông sai, Tròn đúng.
Chú ý: Khi kiểm tra 3 đoạn thẳng có thỏa mãn bất đẳng thức tam giác không, để nhanh gọn, ta chỉ cần kiểm tra tổng độ dài của 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất hay không
(Trả lời bởi Hà Quang Minh)
Hỏi ba độ dài nào sau đây không thể là độ dài ba cạnh của một tam giác? Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm độ dài 3 cạnh.
a) 5 cm, 4 cm, 6 cm.
b) 3 cm, 6 cm, 10 cm.
Thảo luận (1)Hướng dẫn giảia) Vì 5+4 > 6 nên ba độ dài 5 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác.
b) Vì 3 + 6 = 9 < 10 nên ba độ dài 3 cm, 6 cm, 10 cm không thể là độ dài ba cạnh của một tam giác
(Trả lời bởi Kiều Sơn Tùng)
Trở lại tình huống mở đầu, em hãy giải thích vì sao nếu dựng cột điện ở vị trí C trên đoạn thẳng AB thì tổng độ dài dây dẫn điện cần sử dụng là ngắn nhất? (H.9.17)
Thảo luận (1)Hướng dẫn giải+) Nếu A,B,C không thẳng hàng thì ta lập được tam giác ABC. Khi đó, theo bất đẳng thức tam giác, ta có:
AC + CB > AB, tức là độ dài dây dẫn luôn lớn hơn AB.
+) Nếu A,B,C thẳng hàng thì C nằm giữa A và B nên AC + CB = AB, tức là độ dài dây dẫn bằng AB.
Vậy khi C nằm trên đoạn thẳng AB thì tổng độ dài dây dẫn điện cần sử dụng là ngắn nhất.
(Trả lời bởi Hà Quang Minh)
Cho các bộ ba đoạn thẳng có độ dài như sau:
a) 2 cm, 3 cm, 5 cm
b) 3 cm, 4 cm, 6 cm
c) 2 cm, 4 cm, 5 cm.
Hỏi bộ ba nào không thể là độ dài ba cạnh của một tam giác? Vì sao? Với mỗi bộ ba còn lại, hãy vẽ một tam giác có độ dài ba cạnh được cho trong bộ ba đó.
Thảo luận (1)Hướng dẫn giảiTheo bất đẳng thức tam giác:
a) Vì 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không thể là độ dài ba cạnh của một tam giác
b) Vì 3+4 > 6 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác
* Cách vẽ: + Vẽ độ dài cạnh AB = 6cm.
+ Dùng compa, vẽ cung tròn tâm A bán kính 3 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.
Ta được tam giác ABC cần vẽ.
c) Vì 2+4 > 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của một tam giác
* Cách vẽ: + Vẽ độ dài cạnh AB = 5cm.
+ Dùng compa, vẽ cung tròn tâm A bán kính 2 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.
Ta được tam giác ABC cần vẽ.
(Trả lời bởi Kiều Sơn Tùng)
a) Cho tam giác ABC có AB = 1 cm, BC = 7 cm. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên (cm).
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên (cm).
Thảo luận (1)Hướng dẫn giảiÁp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.
(Trả lời bởi Hà Quang Minh)
Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC. (H.9.18)
a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB
b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB
c) Chứng minh MA + MB < CA + CB.
Thảo luận (1)Hướng dẫn giảia) 3 điểm M,N,B không thẳng hàng.
Áp dụng bất đẳng thức tam giác trong tam giác MNB có:
MB < MN + NB
MA + MB < MA + MN + NB
MA + MB < NA + NB ( vì MA + MN = NA) (1)
b) 3 điểm A,N,C không thẳng hàng.
Áp dụng bất đẳng thức tam giác trong tam giác ACN có:
NA < CA + CN
NA + NB < CA + CN + NB
NA + NB < CA + CB ( vì CN + NB = CB) (2)
c) Từ (1) và (2) ta có:
MA + MB < NA + NB < CA + CB
Vậy MA + MB < CA + CB
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC.
Thảo luận (1)Hướng dẫn giảiÁp dụng quan hệ giữa ba cạnh của tam giác ABD, ta có: AD < AB + BD
Áp dụng quan hệ giữa ba cạnh của tam giác ACD, ta có: AD < CD + AC
\(\Rightarrow AD + AD < AB+BD+CD+AC\)
\(\Rightarrow 2AD<AB+BC+AC\) ( vì \(DB+DC=BC\))
\(\Rightarrow\) 2AD < Chu vi tam giác ABC hay AD < (Chu vi tam giác ABC) : 2
Vậy AD nhỏ hơn nửa chu vi tam giác ABC.
(Trả lời bởi Kiều Sơn Tùng)