Bài 3. Hai đường thẳng song song

Mở đầu (SGK Chân trời sáng tạo trang 76)

Hướng dẫn giải

Nếu đường thẳng cắt 2 đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a // b

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Chân trời sáng tạo trang 76,77)

Hướng dẫn giải

Hình a có đường thẳng a // b

Hình b không có 2 đường thẳng song song

Hình c có đường thẳng m // n

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo trang 76,77)

Hướng dẫn giải

Xét hình a: a // b vì đường thẳng c cắt 2 đường thẳng a, b và tạo thành một cặp góc so le trong bằng nhau

Xét hình b: không có cặp đường thẳng nào song song vì đường thẳng g cắt 2 đường thẳng d, e và không tạo thành một cặp góc so le trong bằng nhau ( 90 \(^\circ \)  80 \(^\circ \))

Xét hình c: m // n vì đường thẳng p cắt 2 đường thẳng m, n và tạo thành một cặp góc đồng vị bằng nhau

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo trang 76,77)

Hướng dẫn giải

Vì đường thẳng c cắt 2 đường thẳng a, b và tạo thành một cặp góc đồng vị bằng nhau nên a // b (Dấu hiệu nhận biết 2 đường thẳng song song)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Chân trời sáng tạo trang 78,79)

Hướng dẫn giải

Có chỉ 1 đường thẳng b đi qua A và song song với đường thẳng a

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo trang 78,79)

Hướng dẫn giải

Đo góc ABC. Vẽ đường thẳng a đi qua A sao cho góc tạo bởi a và đường thẳng AB bằng góc ABC.

Ta được đường thẳng a đi qua A và song song với BC

Đo góc ACB. Vẽ đường thẳng b đi qua B sao cho góc tạo bởi b và đường thẳng BC bằng góc ACB.

Ta được đường thẳng b đi qua B và song song với AC

b) Có thể vẽ được chỉ 1 đường thẳng a, 1 đường thẳng b thoả mãn yêu cầu. Vì qua 1 điểm nằm ngoài  một đường thẳng, chỉ có 1 đường thẳng song song với nó

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Hoạt động 3 (SGK Chân trời sáng tạo trang 79,80)

Thực hành 4 (SGK Chân trời sáng tạo trang 79,80)

Hướng dẫn giải

a) Vì m // n nên x = 135\(^\circ \)( 2 góc đồng vị) ; y = 80\(^\circ \) ( 2 góc so le trong)

b)

Vì a // b nên \(\widehat {{M_1}} = 60^\circ \) ( 2 góc đồng vị)

Mà \(\widehat {{M_1}} + z = 180^\circ \) ( 2 góc kề bù) nên z = 180\(^\circ \)- 60\(^\circ \)=120\(^\circ \)

Vì a // b nên \(\widehat {{F_1}} = t\) ( 2 góc so le trong), mà \(\widehat {{F_1}} = 90^\circ \) nên t = 90\(^\circ \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo trang 79,80)

Hướng dẫn giải

Vì a // b nên \(\widehat {BAC} = \widehat {CDE};\widehat {ABC} = \widehat {CED}\) (2 góc so le trong)

Ta có: \(\widehat {ACB} = \widehat {DCE}\) ( 2 góc đối đỉnh).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo trang 79,80)

Hướng dẫn giải

Vì a //  b nên \(\widehat {{B_1}} = \widehat {{A_1}}\) (2 góc đồng vị), mà \(\widehat {{A_1}} = 90^\circ \) nên \(\widehat {{B_1}} = 90^\circ \).

Vậy c vuông góc với b.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)