Bài 3: Các phép toán trên tập hợp

Khởi động (SGK Chân trời sáng tạo trang 21-23)

Hướng dẫn giải

Bội của 3: 75, 78, 90, 120, 231

Bội của 5: 65, 75, 90, 100, 120

Vừa là bội của 3, vừa là bội của 5: 75, 90, 120.

Không là bội của 3 và không là bội của 5: 82, 94

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Khám phá 1 (SGK Chân trời sáng tạo trang 21-23)

Hướng dẫn giải

a) Tập hợp A gồm các ứng viên đạt yêu cầu về chuyên môn là:

\(A = \{ {a_1};{a_2};{a_5};{a_6};{a_7};{a_8};{a_{10}}\} \)

Tập hợp B gồm các ứng viên đạt yêu cầu về ngoại ngữ là:

\(B = \{ {a_1};{a_3};{a_5};{a_6};{a_8};{a_{10}}\} \)

b) Tập hợp C gồm các ứng viên đạt yêu cầu cả về chuyên môn và ngoại ngữ là:

\(C = \{ {a_1};{a_5};{a_6};{a_8};{a_{10}}\} \)

c) Tập hợp D gồm các ứng viên đạt ít nhất một trong hai yêu cầu về chuyên môn và ngoại ngữ là:

\(D = \{ {a_1};{a_2};{a_3};{a_5};{a_6};{a_7};{a_8};{a_{10}}\} \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo trang 21-23)

Hướng dẫn giải

a) \(A \cup B = \{ a;b;c;d;e;i;u\} \), \(A \cap B = \{ a;e\} \)

b) Phương trình \({x^2} + 2x - 3 = 0\) có hai nghiệm là 1 và -3, nên \(A = \{ 1; - 3\} \)

Phương trình \(B = \{ x \in \mathbb{R}|\;|x|\; = 1\} \) có hai nghiệm là 1 và -1, nên \(B = \{ 1; - 1\} \)

Từ đó, \(A \cup B = \{ 1; - 1; - 3\} \), \(A \cap B = \{ 1\} .\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo trang 21-23)

Hướng dẫn giải

a) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},3x - y = 9,x - y = 1\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x;y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 9\\x - y = 1\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}y = 3x - 9\\y = x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 3x - 9\\y = x - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2x = 8\\y = x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 3\end{array} \right.\end{array}\)

Vậy \(A \cap B = \{ (4;3)\} .\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng (SGK Chân trời sáng tạo trang 21-23)

Hướng dẫn giải

Gọi A, B lần lượt là tập hợp các khán giả bình chọn cho thí sinh A và thí sinh B.

Theo giả thiết, \(n(A) = 85,n(B) = 72,n(A \cap B) = 60\)

 

Nhận thấy rằng, nếu tính tổng \(n(A) + n(B)\) thì ta được số khán giả đã tham gia bình chọn, nhưng số khán giả bình chọn cho cả hai thí sinh được tính hai lần. Do đó, số khán giả đã tham gia bình chọn là:

\(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 85 + 72 - 60 = 97\)

Như vậy trong hội trường 100 khán giả, có 97 khán giải đã tham gia bình chọn, còn lại số khán giả không tham gia bình chọn là: \(100 - 97 = 3\) (khán giả).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo trang 23-25)

Hướng dẫn giải

a) Tập hợp E gồm những ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ là: \(E = \{ {a_2};{a_7}\} \)

b) Xác định tập hợp F gồm những ứng viên không đạt yêu cầu về chuyên môn là: \(F = \{ {a_3};{a_4};{a_9}\} \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo trang 23-25)

Hướng dẫn giải

\(E = \{ x \in \mathbb{N}|x < 8\}  = \{ 0;1;2;3;4;5;6;7\} \)

a) Ta có: \(A\backslash B = \left\{ {0;1;2} \right\}\), \(B\backslash A = \left\{ 5 \right\},\)\((A\backslash B) \cap {\rm{(}}B\backslash A) = \emptyset \)

b) Ta có: \(A \cap B = \{ 3;4\} ,\;{C_E}(A \cap B) = \{ 0;1;2;5;6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cap ({C_E}B) = \{ 6;7\} \)

c) Ta có: \(A \cup B = \{ 0;1;2;3;4;5\} ,\;{C_E}(A \cup B) = \{ 6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cup ({C_E}B) = \{ 0;1;2;5;6;7\} \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 4 (SGK Chân trời sáng tạo trang 23-25)

Hướng dẫn giải

Tham khảo:

a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(A = [ - 2;3)\)

b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(B = [0;1)\)

 c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)

d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 1 (SGK Chân trời sáng tạo trang 25)

Hướng dẫn giải

a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.

\(A \cup B = \){đỏ; cam; vàng; lục; lam; chàm; tím}

\(A \cap B = \){lục; lam}

b) Vì mỗi tam giác đều cũng là một tam giác cân nên \(A \subset B.\)

\(A \cup B = B,\;A \cap B = A.\)

Chú ý

Nếu \(A \subset B\) thì \(A \cup B = B,\;A \cap B = A.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Chân trời sáng tạo trang 25)

Hướng dẫn giải

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{  - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y =  - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 =  - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)