Tìm GTLN của biểu thức
\(A=\sqrt{3x-5}+\sqrt{7x-3}\)
Tìm GTLN của biểu thức:
\(A=\frac{\sqrt{7x-5}}{7x-9}\)
\(\text{Tìm GTNN, GTLN (nếu có) của biểu thức:}\)
\(A=\sqrt{5+3x}+\sqrt{3-2x}\)
Tìm GTLN của biểu thức
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
hack não lắm giúp nốt nốt và nốt
Đã từng lm qua nhưng ko chắc á
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXD\): \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max A2=4 => Max A=2 khi x=2
e lm cách khác nhưng ko bt có đúng ko nữa:(
Ta có:
\(A^2=\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\)
\(\Rightarrow A^2=\left(\sqrt{3x-5}\cdot1+\sqrt{7-3x}\cdot1\right)^2\)
Áp dụng BĐT bu-nhi-a-cốp-ski ta có:
\(A^2\le\left(\sqrt{3x-5}^2+\sqrt{7-3x}^2\right)\left(1^2+1^2\right)\)
\(A^2\le\left(3x-5+7-3x\right)\cdot2\)
\(A^2\le4\)
\(\Rightarrow A\le2\left(because:A\ge0\right)\)
Dấu "=" xảy ra khi \(x=2\)
giá trị GTLN của biểu thức A = \(\sqrt{3x-5}+\sqrt{7-3x}\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(1^2+1^2\right)\left(3x-5+7-3x\right)\left(\dfrac{5}{3}\le x\le\dfrac{7}{3}\right)\)
\(\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\)
\(\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)
\(\Rightarrow A_{Max}=2."="\Leftrightarrow x=2\left(TM\right)\)
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC 2 CÓ NGHĨA
1/\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
2/\(\sqrt{-2x+3}\)
3/\(\sqrt{-7x-14}\)
4/\(\sqrt{\dfrac{x^2+2}{1-4x}}\)
5/\(\sqrt{-5-3x}\)
1) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
2) ĐKXĐ: \(x\le\dfrac{3}{2}\)
3) ĐKXĐ: \(x\le-2\)
4) ĐKXĐ: \(x< \dfrac{1}{4}\)
5) ĐKXĐ: \(x\le-\dfrac{5}{3}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
Không tồn tại giá trị nhỏ nhất.1. Tìm GTLN, GTNN của hàm số: \(y=3\sqrt{x-1}+4\sqrt{5-x}\)
2. Tìm GTLN của biểu thức. \(A=\sqrt{\left(x-1994\right)^2}+\sqrt{\left(x+1995\right)^2}\)
3. Tìm GTNN của biểu thức: \(B=\dfrac{3}{2+\sqrt{2x-x^2+7}}\)
4. Tìm GTNN của: \(C=\dfrac{5-3x}{\sqrt{1-x^2}}\)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
Bài 3:
Ta thấy:
\(2x-x^2+7=8-(x^2-2x+1)=8-(x-1)^2\leq 8, \forall x\in\mathbb{R}\)
\(\Rightarrow 2+\sqrt{2x-x^2+7}\leq 2+\sqrt{8}=2+2\sqrt{2}\)
\(\Rightarrow B=\frac{3}{2+\sqrt{2x-x^2+7}}\geq \frac{3}{2+2\sqrt{2}}\)
Vậy GTNN của $B$ là \(\frac{3}{2+2\sqrt{2}}\).
Đẳng thức xảy ra tại \((x-1)^2=0\Leftrightarrow x=1\)