Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đà Giang
Xem chi tiết
Nguyễn Anh Quan
15 tháng 1 2018 lúc 20:56

A = 2.(x^2+2xy+y^2-8x-8y+4)+(y^2+6y+9)+1

   = 2.[(x+y)^2-2.(x+y).2+4]+(y+3)^2+1

   = 2.(x+y-2)^2+(y+3)^2+1 >= 1

Dấu "=" xảy ra <=> x+y-2=0 hoặc y+3=0 <=> x=5 hoặc y=-3

Vậy Min của A = 1 <=> x=5 hoặc y=-3

Tk mk nha

Lê Ngọc Quyên
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Vinh Lê Thành
Xem chi tiết

2x^2 + 3y^2 + 4xy - 8x - 2y + 18

= 2x^2 + 4xy - 8x +3y^2 - 2y + 18

=2( x^2 + 2xy -4x ) + 3y^2 - 2y +18

=2( x^2 + 2x( y - 2)) + 3y^2 - 2y + 18

=2(x + y - 2)^2 +3y^2 -2y +18 - 2(y - 2)^2

=2(x +y -2)^2 +3y^2 -2y +18- 2y^2 -8y -8

=2(x +y -2)^2 +y^2 - 10y + 10

Phần còn lại tự làm nhé

Rồng Đom Đóm
Xem chi tiết
Phạm Nguyễn Tất Đạt
21 tháng 3 2018 lúc 19:11

Ta có:\(A=2x^2+3y^2+4xy-8x-2y+18\)

\(A=2\left(x^2+2xy+y^2\right)-8\left(x+y\right)+8+y^2+6y+9+1\)

\(A=2\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(y+3\right)^2+1\)

\(A=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

\(\Rightarrow MINA=1\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\)

Nguyễn Thế Anh
21 tháng 8 2024 lúc 21:30

m666666

Nguyen pham truong thinh
Xem chi tiết
Nguyễn Anh Quan
15 tháng 1 2018 lúc 20:36

2A = 4x^2+6y^2+8xy-16x-4y+36

     = [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2

     = (2x+2y-4)^2+2.(y+3)^2+2 >= 2

=> A >= 1

Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3

Vậy GTNN của A = 1 <=> x=5 và y=-3

Tk mk nha

Nguyễn Thị Lan Anh
Xem chi tiết
ffcs
Xem chi tiết
ffcs
Xem chi tiết