Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yeens
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2021 lúc 22:00

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

Hày Cưi
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Kiệt Võ
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 2:13

Lời giải:

PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$

$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$

$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$

$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$

$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$

$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$

Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.

Do đó: $\sqrt{xy}$ là scp

Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$

$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$

$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$

$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.

Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$

Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.

 

Đặng Thu Hường
Xem chi tiết
Huyền Nhi
8 tháng 1 2019 lúc 23:18

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

tth_new
9 tháng 1 2019 lúc 8:21

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

Bụng ღ Mon
Xem chi tiết
Nguyễn Linh Chi
19 tháng 6 2020 lúc 15:58

và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)

=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương 

=> \(\sqrt{503y}\) là số nguyên dương 

mà 503 là số nguyên tố và 0 < y < 2012

=> y = 503 

=> x = 503

Kết luận:...

Khách vãng lai đã xóa

Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải? 

Khách vãng lai đã xóa
Minh Hiếu
Xem chi tiết
Đỗ Thanh Hải
4 tháng 1 2022 lúc 20:12

Tham khảo nha e

undefinedundefined

❤X༙L༙R༙8❤
4 tháng 1 2022 lúc 20:15

đăng câu hỏi kiểu j mà đặng đc lên như thế này đấy

 

Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 20:24

1.

Đặt \(\sqrt[3]{2+\sqrt{b}}=x;\sqrt[3]{2-\sqrt{b}}=y\)

Do \(x>0\Rightarrow x^2+y^2-xy=\dfrac{3}{4}x^2+\left(\dfrac{1}{2}x-y\right)^2>0\)

\(PT\Leftrightarrow\dfrac{x^3+y^3}{a}+xy=x^2+y^2\Leftrightarrow\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{a}=x^2-xy+y^2\\ \Leftrightarrow\left(x^2-xy+y^2\right)\left(\dfrac{x+y}{a}-1\right)=0\\ \Leftrightarrow\dfrac{x+y}{a}=1\\ \Leftrightarrow\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a\left(1\right)\\ \Leftrightarrow\left(\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}\right)^3=a^3\\ \Leftrightarrow4+3a\sqrt[3]{4-b}=a^3\left(2\right)\\ \Rightarrow4-b=\left(\dfrac{a^3-4}{3a}\right)^3\)

Mặt khác \(b\in \mathbb{Z^+}\)

\(\Rightarrow\left(a^3-4\right)⋮3a\Rightarrow\left(a^3-4\right)⋮a\\ \Rightarrow4⋮a\Rightarrow a\in\left\{1;2;4\right\}\)

Với \(a=1\Rightarrow4-b=1\Rightarrow b=5\)

Với \(a=2;a=4\Rightarrow b\notin \mathbb{Z}\)

Vậy \(\left(a;b\right)=\left(1;5\right)\)

senorita
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Phạm Thị Thùy Linh
15 tháng 6 2019 lúc 9:52

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

Đông Phương Lạc
15 tháng 6 2019 lúc 9:57

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3

zZz Cool Kid_new zZz
15 tháng 6 2019 lúc 10:08

Do x,y có vai trò bình đẳng như nhau,giả sử \(x\le y\le z\)

Ta có:

\(\frac{1}{x}+\frac{1}{y}=z\)

\(\Rightarrow\frac{x+y}{xy}=z\)

\(\Rightarrow x+y=xyz\)

\(\Rightarrow xyz\le2y\)

\(\Rightarrow xz\le2\)

\(\Rightarrow x=1;z=2\left(h\right)x=2;z=1\)

Với \(x=1;z=2\Rightarrow y=1\left(TM\right)\)

Với \(x=2;z=1\Rightarrow y=2\left(TM\right)\)

Vậy cặp số \(\left(x;y;z\right)\) thỏa mãn là:\(\left(1;1;2\right);\left(2;2;1\right)\).

P/S:Em nghĩ câu kết luận ko cần "và các hoán vị của x,y" nữa ạ vì x=y rồi ạ.Nếu sai ở đâu mong mọi người góp ý.