chứng minh rằng: S= 1/2+1/2^2+1/2^3+...+1/2^20
Giúp mik vs nha
Chứng minh rằng : 1/1*3+1/2*4+1/3*5+1/4*6+...+1/97*99+1/98*100 < 3/4
Giúp mik vs nha
chứng minh răng S = 1/2+1/2^2+1/2^3+.........+1/2^20<1
help vs nhanh lên nha mn!
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2S-S=1-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.
Chứng minh rằng: A= 1/ 1^2 + 1/ 2^2 + 1/ 3^2+.....+1/ 2020^2 < 7/4
GIÚP MIK VỚI NHA !
A = 1/1^2 + 1/2^2 + 1/3^2 + ... + 1/2020^2
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2020^2 < 1/2019.2020
=> A < 1 + 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2019*2020
=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2020
=> A < 2 - 1/2020
=> A < 4039/2020 < 7/4
=> a < 7/4
Chứng minh rằng: 2^99 - 1 chia hết cho 7
Giúp mik vs nha ! Mik cảm ơn nhìu nhìu lắm !
S= 1/3 - 2/3^2 + 3/3^3 - 4/3^4+...+ 99/3^99 - 100/3^100
chứng minh S<1/5
mọi người giải giúp mik vs ạ
chứng minh rằng
1/2+1/2^2+1/2^3+1/2^4+...+1/2^9=1-1/2^9
giúp mik ngay trong tooid nay nha cảm ơn!
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}.\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=1-\frac{1}{2^9}\)
\(A=1-\frac{1}{2^9}\)
=> đpcm
Chứng minh rằng :
Tổng S = 3^1+3^2+3^3+...+3^100 chia hết cho 120
giúp mik vs, mai mik thi rồi
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
Chứng minh rằng: S=1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2+1/10^2 < 2
Giúp vs nha mấy bn ! Thanks!!!!!!!!!!!
Lời giải:
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)
\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{10}\)
\(\Rightarrow S< 2-\dfrac{1}{10}\)
\(\Rightarrow S< 2\)
hãy chứng tỏ rằng tổng s=1/2+1/3+1/4+...+1/16 ko phải là số tự nhiên
giúp mik vs
Ta có
\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)
Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)
\(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)
\(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)
=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)
=> S<3 (1)
Lập luận tương tự ta có
\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)
=> S>2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.