cho tam giác ABC (AB khác AC). gọi M là một điểm nằm giữa B và C. gọi E và F là hình chiếu của B và C xuống đường thẳng AM. so sánh BE+CF và BC
cho tam giác ABC (AB khác AC). gọi M là một điểm nằm giữa B và C. gọi E và F là hình chiếu của B và C xuống đường thẳng AM. so sánh BE+CF và BC
cho tam giác ABC biết AB khác AC gọi M là 1 điểm nằm giữa B&C gọi E và F là hình chiếu của B&C xuống AM so sánh tổng BE+CF với BC
ta có:tam giác BEM vuông tại E suy ra BM là cạnh lớn nhất trong tam giác BEM
suy ra:BM>BE
ta có: tam giác MFC vuông tại F suy ra MC là cạnh lớn nhất trong tam giác FMC
suy ra CM>CF
từ 2 điều trên suy ra
BM+CM>CF+BE
BC>CF+BE
cho tam giác ABC, AB khác AC. Gọi M là 1 điểm nằm giữa B và C. Gọi E và F là hình chiếu của B và C dưới đường thẳng AM. So sánh tổng BE, CF và BC.
Vẽ hình hộ mình nha.
Bài 1 : Cho đường thẳng a và điểm A nằm ngoài đường thẳng a . Trên đường thẳng a lấy hai điểm B và C . Tính độ dài các đường xiên AB , AC biết AH=6cm ; HB=8cm ; HC=10cm
Bài 2 :Cho tam giác ABC ( AB khác AC) Gọi M là một điểm nằm giữa B và C. Gọi E lần lượt là hình chiếu của B và C xuống đường thẳng AM. So sánh BE+CF với BC
Bài 3 : Cho tam giác ABC có 3 góc nhọn . Kẻ BD vuông góc với AC ( D thuộc AC ), CE vuông góc với AB ( E thuộc AB ). Chứng minh BD+CE<AB+AC
GIÚP MÌNH VỚI !!! TỐI THỨ BẢY NHÉ MỌI NGƯỜI NHỚ VẼ HÌNH NHÉ CÁC BẠN
Bài 1: Cho ΔABC, M là điểm nằm giữa 2 điểm B và C. Gọi E và F lần lượt là hình chiếu vuông góc của B và C xuống đường thẳng AM. So sánh BE, CF và BC
Bài 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh: AB <\(\frac{BE+BF}{2}\)
Ai giúp mik hai bài này vs !!
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
cho tam giác ABC nhọn và điểm M thược cạnh BC . gọi E và F lần lượt là hình chiếu của B và C xuống đường thẳng AM . Xác định vị trí của M để tổng BE+CF lớn nhất
cho tam giác ABC (AB ≠AC). gọi M là một điểm nằm giữa B và C. gọi E và F là hình chiếu của B và C xuống đường thẳng AM. so sánh BE+CF và BC
cho tam giác ABC (AB khác AC). gọi M là một điểm nằm giữa B và C. gọi E và F là hình chiếu của B và C xuống đường thẳng AM. so sánh BE+CF và BC
Ta có: BE vuông góc với AM ( GT)
=> BE<BM ( quan hệ giữa đường vuông góc và đường xiên) (1)
Lại có: CF vuông góc với AM (GT)
=> CF<CM ( quan hệ giữa đường vuông góc và đường xiên) (2)
Từ (1) và (2) => BE+CF<BM+CM
=> BE+CF<BC
Ở trong hình BE, CF vuông góc với AM nhé