Cho A=4+4^2+4^3+...+4^24
chứng minh rằng A chia hết cho 420
ai nhạn mk k ,k đg gấp
Cho A = 4+4^2+4^3+...+4^23+4^24
Chứng minh : A chia hết cho 20, 21 và 420
mọi người giúp mik vs, mai mik thi rồi
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
cho A=4+4^2+4^3+4^4+...+4^12 . Chứng minh rằng
a) Achia hết cho 4
b) A chia hết cho 5
c) Achia hết cho 21
giúp mk đi ạ mk đang cần gấp❤
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
chứng minh rằng 1^4^k +2^4^k+3^4^k+4^4^k không chia hết cho 5
chứng minh rằng 1^4^k +2^4^k+3^4^k+4^4^k không chia hết cho 5
Cho A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^50
Chứng minh A chia hết cho 4
Ai làm nhanh nhất mk sẽ k
\(A=3+3^2+3^3+3^4+...+3^{50}.\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(=\left(3\cdot1+3\cdot3\right)+\left(3^3\cdot1+3^3\cdot3\right)+...+\left(3^{49}\cdot1+3^{49}\cdot3\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{49}\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^{49}\cdot4\)
\(=4\cdot\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A⋮4\)
Học tốt ^3^
Trả lời:
\(A=3+3^2+3^3+3^4+...+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=\left(3+3^3+...+3^{49}\right).4\)
Vì \(3+3^3+...+3^{49}\inℕ\)
Mà \(4⋮4\)
\(\Rightarrow\)\(\left(3+3^3+...+3^{49}\right).4⋮4\)
Hay \(A⋮4\left(đpcm\right)\)
Vậy\(A⋮4\)
Hok tốt!
Vuong Dong Yet
Cho A= 4+4^2+4^3+...+4^23+4^24
Chứng minh rằng A chia hết cho 20, chia hết cho 21, chia hết cho 420
giup mk nhé
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Cho A=1+4+42+....+411.Chứng minh rằng:
a) A chia hết cho 21
b) A chia hết cho 105
c) A chia hết cho 4097
Ai làm đúng mình k cho
cho ba số tự nhiên abc không chia hết cho 4 .Khi chia a;b'ccho 4 thì có 3 số dư khắc nhau . Chứng minh rằng (a;b;c) :2
Giúp mk với mk đang cần gấp
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37