Cho tam giác ABC cân tại A(góc A nhọn).Kẻ AD vuông BC tại D,DM vuông AB tại M,DN vuông AC tại N
a)C/m 2 tam giác DAB và DAC bằng nhau.
b)C/m tam giác DMN cân.
c)Gọi E là giao điểm của MD và AC,F là giao điểm của AB và ND.C/m BC//EF
Cho tam giác ABC cân tại A ( Góc A là góc nhọn ) . VẼ AD vuông góc với BC tại D , DM vuông góc với AB tại M , DN vuông góc với AC tại N
a ) CM : tam giác DAB = tam giác DAC
b) CM : tam giác DMN cân
c) Gọi E là giao điểm của MD và AC , F là giao điểm của AB và ND . Chứng minh rằng BC // EF
Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già
Cho ∆ABC cân tại A (góc A nhọn). Vẽ AD vuông góc với BC tại D, MD vuông góc với AB tại M, DN vuông góc với AC tại N.
a) Chứng minh ∆DAB = ∆DAC
b) Chứng minh ∆DMN cân
c) Gọi E là giao điểm của MD và AC, F là giao điểm của AB và ND. Chứng minh BC // EF.
A, Ta có tam giác ABC cân tại A => và AB=AC
xét tam giác acd và tam giác abd có : góc adb=góc adc (= 90 độ)
ab=ac (cmt)
ad chung
=> tam giác acd =tam giác abd ( ch-cgv)
b xét tam giác : mdb và tam giác ndc có :
góc abd=góc acd ( tam giác abc tcaan tại a )
bd=dc ( theo a, tam giác adb = tam giác adc)
góc dmb =góc bnc ( md vuông ad, dn vuông ac )
=) 2 tam giác mdb và tam giác ndc bằng nhau ( ch-gn )
=) md=mn ( 2 cạnh tương ứng )
=) tam giác mnd cân tại d
c, xét tam giác aef :
fn vuông ae
em vuông à mà fn giao me tại d =) d là trực tâm
=) ad vuông góc fe
lại có :
ad vuông bc
ad vuông fe
=) bc// fe
a)Xét tam giác DAB và tam giác DAC
AD.cạnh chung
AB=AC(tam giác ABC là tam giác cân)
AD là góc vuông
=> tam giác DAB=tam giác DAC(cạnh huyền-góc vuông)
b)Xét tam giác ADM và tam giác ADN
AD.Cạnh chung
góc DAM=góc DAN(tam giác DAB=tam giác DAC)
góc AND = góc AMD = 90
=>tam giác ADM=tam giác ADN (cạnh huyền-góc nhọn)
=>DN=DM
=> tam giác DMN là tam giác cân
Bài 2.
Cho tam giác ABC cân tại A, phân giác của cắt BC tại D. Kẻ DM vuông góc với AB tại M; DN vuông góc với AC tại N
a) Chứng minh: AM = AN.
b) Trên tia MD lấy điểm E sao cho D là trung điểm của ME. Gọi F là giao điểm của NE với BC. Chứng minh rằng và NE song song với AD.
c) Gọi I là giao điểm của MF và DN. Chứng minh rằng các đường thẳng AD, MN, EI cùng đi qua một điểm.
GIUP MIK NHA DG GAP
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔAMD=ΔAND
=>AM=AN
b: Xét ΔMNE có
ND là trung tuyến
ND=1/2ME
=>ΔMNE vuông tại N
=>NE vuông góc MN
ΔAMD=ΔAND
=>AM=AN và DM=DN
=>AD là trung trực của MN
=>AD vuông góc MN
=>AD//NE
Cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của góc ABC ( D thuộc AC). Kẻ DM vuông giác với BC tại M. Gọi K là giao của DM và AB, đường thẳng DB cắt KC tại N. E là trung điểm của BC.
a. Chứng mình tam giác DAB = tam giác DMB.
b. Chứng minh BD là đường trung trực của AM
c. Chứng minh BN vuông góc với KC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc kC tại N
Cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của góc ABC, (D thuộc AC) . Kẻ DM vuông góc với BC tại M. a) Chứng minh tam giác DAB= tam giác DMP b) Chứng minh AD<AC
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng
BD cắt KC tại N. Chứng minh BN vuông góc với KC và tam giác KBC cân tại B
a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B
Bài 1: Cho tam giác ABC cân tại A. Trên B lấy 2 điểm M,N sao cho M nằm giữa B,N và BM = NC.
a, CMR: tam giác AMN cân.
b, MH vuông với AB, NK vuông với AC. CMR: MH = NK
c, CMR: Tam giác DHA cân.
d, Gọi D là giao điểm của HM và KN. CMR: AD là phân giác của góc MAN và BAC.
e, Nếu góc ABC = 30 độ thì tam giác DMN là tam giác gì? Tính MD theo MI (I là giao điểm của BC và AD)
Bài 2: Cho tam giác ABC nhọn. Vẽ ra ngoài tam giác các tam giác vuông cân tại A là Tam giác ABE và tam giác ACD.
CMR: EC = BD và EC vuông với BD
Cho tam giác ABC cân tại A có AD là đường phân giác a, CM tam giác ADB = tam giác ADC b, kẻ DM vuông góc với AB tại M, DN vuông góc với AC tại N. CM tam giác DMN cân c, Lấy điểm P sao cho D là trung điểm của đoạn thẳng NP. CM đường thẳng BC là đường trung trực của đoạn thẳng MP d, Gọi MP cắt BC tại K, NK cắt MD tại I. CM AD,MN,IP cùng đi qua một điểm
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔABD=ΔACD
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>MD=DN
=>ΔDMN cân tại D
Cho tam giác ABC vuông tại A, có AB= 9cm, AC= 12cm
a) Tính BC
b) Tia phân giác của góc B cắt cạnh AC tại D. Kẻ MD vuông góc tại M, chứng minh: Tam giác ABD= Tam giác MBD
c) Gọi giao điểm của DM và AB là E. chứng minh: Tam giác BEC cân
Cho tam giác ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại C ở D. Vẽ BE vuông góc với CD tại E, gọi M là giao điểm của AD và BE.. Vẽ EN vuông góc BD tại N
a) Chứng minh DE/DM=DC/DA
b) Chứng minh MN//AB
c) Chứng minh ME=MB
( Bạn tự vẽ hình nhé )
a) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝ \(\dfrac{DE}{DM}=\dfrac{DC}{DA}\) ( Hệ quả định lý TaLét )
b) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝\(\dfrac{DA}{DM}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 1 )
Xét tam giác DBC có NE//BC ( cùng ⊥ BD )( N∈BD ; E∈CD )
➝ \(\dfrac{DB}{DN}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 2 )
Từ ( 1 ) ( 2 ) ➞ \(\dfrac{DA}{DM}=\dfrac{DB}{DN}=\dfrac{DC}{DE}\)
Mà ( N∈BD ; E∈CD )
➝ MN // AB ( ĐL Talet đảo )
c) Ta có : AB // MN , BC // NE , ME//AC
Mà \(\left\{{}\begin{matrix}\text{BC , NE , BA , MN cùng thuộc bờ mặt phẳng BD}\\\text{BC , NE , CA , ME cùng thuộc bờ mặt phẳng DC}\end{matrix}\right..\text{ }\)
→ \(\widehat{ABC}=\widehat{MNE}\) ; \(\widehat{ACB}=\widehat{MEN}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
➞ ΔMNE cân tại M
➝ MN = ME
Lại có : \(\widehat{MNE}+\widehat{MNB}=90=\widehat{MEN}+\widehat{MBN}\) ( hai góc phụ nhau )
Mà \(\stackrel\frown{MNE}=\stackrel\frown{MEN}\)
➝ \(\widehat{MBN}=\widehat{MNB}\)
➞ Δ MBN cân
➝ BM = MN
Mà MN = ME
➝ MB = ME
➤ ĐPCM