( Bạn tự vẽ hình nhé )
a) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝ \(\dfrac{DE}{DM}=\dfrac{DC}{DA}\) ( Hệ quả định lý TaLét )
b) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝\(\dfrac{DA}{DM}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 1 )
Xét tam giác DBC có NE//BC ( cùng ⊥ BD )( N∈BD ; E∈CD )
➝ \(\dfrac{DB}{DN}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 2 )
Từ ( 1 ) ( 2 ) ➞ \(\dfrac{DA}{DM}=\dfrac{DB}{DN}=\dfrac{DC}{DE}\)
Mà ( N∈BD ; E∈CD )
➝ MN // AB ( ĐL Talet đảo )
c) Ta có : AB // MN , BC // NE , ME//AC
Mà \(\left\{{}\begin{matrix}\text{BC , NE , BA , MN cùng thuộc bờ mặt phẳng BD}\\\text{BC , NE , CA , ME cùng thuộc bờ mặt phẳng DC}\end{matrix}\right..\text{ }\)
→ \(\widehat{ABC}=\widehat{MNE}\) ; \(\widehat{ACB}=\widehat{MEN}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
➞ ΔMNE cân tại M
➝ MN = ME
Lại có : \(\widehat{MNE}+\widehat{MNB}=90=\widehat{MEN}+\widehat{MBN}\) ( hai góc phụ nhau )
Mà \(\stackrel\frown{MNE}=\stackrel\frown{MEN}\)
➝ \(\widehat{MBN}=\widehat{MNB}\)
➞ Δ MBN cân
➝ BM = MN
Mà MN = ME
➝ MB = ME
➤ ĐPCM