Cho tam giác ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại C ở D. Vẽ BE vuông góc với CD tại E, gọi M là giao điểm của AD và BE.. Vẽ EN vuông góc BD tại N
a) Chứng minh DE/DM=DC/DA
b) Chứng minh MN//AB
c) Chứng minh ME=MB
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
ho tam giác ABC vuông cân tại đỉnh A. Qua A kẻ đường thẳng xy bất kỳ không cắt đoạn thẳng BC. kẻ BM và CN vuông góc với xy .timm điều kiện xy để A là trung điểm MN
Bài 1:Cho tam giác ABC vuông tại A, đường cao AH và AB = 15cm, AC = 20cm. Gọi D là trung điểm của AB. Qua D kẻ DE vuông góc với BC tại E.
a) Tính BC, AH
Cho tam giác ABC có AB = 18 cm, AC = 12 cm, BC = 9 cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3 cm. Qua D kẻ đường thẳng song song với AB cắt tia AC tại E. Gọi F là giao điểm của AD và BE. Tính: a) Độ dài CE, DE
Cho tam giác ABC cân tại A, BC = 8cm, phân giác của góc B cắt đường cáo AH ở K, AK/AH = 3/5 a) Tính độ dài AB b) Đường thẳn vuông góc với BK cắt AH ở E. Tính EH
Cho Tam giác KIM vuông tại K, đường phân giác của góc K cắt IM tại B. a. Tính IM, BI, BM biết KI = 15cm , KM = 20cm . b. Từ trung điểm A của IM kẻ đường thẳng song song với KB cắt cạnh KM tại C và tia IK tại H. Chứng minh: (MA)/(MB) = (AC)/(KB) c. Chứng minh: Tam giác KHC cân và H = MC d. Kẻ các đường phân giác ID và MN của tam giác KIM . Chứng minh : BI/BM * DM/DK * NK/NI =1
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF