Tìm số abc thỏa mãn : a x b x c = a + b + c
Tìm số abc lớn nhất thỏa mãn : a x b x c=a + b+c
Ta có: 1: 0,abc = a + b + c hay
(a+b+c) x abc = 1000
Suy ra: a khác 0 và a+b+c<10 (số có 1 chữ số).
Tích 1 số có 1 chữ số và một số có 3 chữ số là 1000 có các trường hợp sau:
125 x 8 = 1000 => a=1; b=2; c=5
250 x 4 = 1000 (loại)
500 x 2 = 1000 (loại)
Vậy: abc = 125
321 Chắc 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
Sai rồi Soái Muội=321 nhé
Tìm abc lớn nhất thỏa mãn A x B x C = A + B + C
A x B x C = A + B + C
Thỏa mãn đề bài chỉ có thể là 321 !
Bạn k cho mk nhé !
Tìm abc lớn nhất thỏa mãn a x b x c=a + b +c.Số đó là ....
Tìm số abc lớn nhất thỏa mãn a x b x c = a+b+c
mk đồng ý với ý kiến của bạn thanh huyền
tìm số tự nhiên có 4 chữ só có dạng abcd với a, b ,c ,d là chác chữ số thỏa mãn abc x c = dac.
\(\overline{abc}=100xa+10xb+c\)
\(\Rightarrow\overline{abc}x\overline{c}=100xaxc+10xbxc+cxc\left(1\right)\)
\(\overline{dac}=100xd+10xa+c\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}c=cxc\\a=bxc\\d=axc\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=1\\a=b\\d=a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b=d\\c=1\end{matrix}\right.\)
Vậy dạng số tự nhiên có 4 chữ số cần tìm là \(\overline{aaa1}\left(a\in N\right)\)
\(\overline{abc}xc=\overline{dac}\)
=> c = 1 hoặc c = 5 hoặc
+ Với c=1
\(\overline{ab1}x1=\overline{da1}\Rightarrow\overline{ab}=\overline{da}\Rightarrow a=b=d\)
=> các số có 4 chữ số \(\overline{aaa1}\) thỏa mãn đề bài
+ Với c=5
\(\overline{ab5}x5=\overline{da5}\Rightarrow a< 2\Rightarrow a=1\)
\(\Rightarrow\overline{1b5}x5=\overline{d15}\Rightarrow105x5+50xb=100xd+15\)
\(\Rightarrow100xd-50xb=510\Rightarrow10xd-5xb=51\)
Vế phải chia hết cho 5 vế trái không chia hết cho 5 nên c=5 loại
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.