Tìm tất cả các số tự nhiên n biết:
6n+5 chia hết cho 3n+2
a Tìm số nguyên n sao cho n 2 chia hết cho n 3b Tìm tất cả các số nguyên n biết 6n 1 chia hết cho 3n 1
a) Tìm số nguyên n sao cho : n + 2 chia hết cho n - 3
b) Tìm tất cả các số nguyên n biết : (6n + 1) chia hết cho (3n - 1)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
Tìm số tự nhiên n sao cho:
1) 3n chia hết cho 2n-5
2) 4n+3 chia hết cho 2n+6
3) 2n+6 chia hết cho 3n+1
(Tích tất cả các bình luận đúng)
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
Với mỗi số tự nhiên n, đặt \(a_n=3n^2+6n+13\)
a) Chứng minh rằng nếu hai số a1;a2 không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì a1+a2 chia hết cho 5
b) Tìm tất cả các số tự nhiên n lẻ sao cho an là số chính phương
Tìm tất cả các số tự nhiên n thoả mãn 6n + 16 chia hết cho n + 2? mình cần gấp
\(6\left(n+2\right)+4⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Tìm tất cả các số tự nhiên n sao cho n^2+3n+1 chia hết cho n+1
\(\Leftrightarrow n+1=1\)
hay n=0
tìm tất cả các số tự nhiên n để n+6 chia hết cho 3n-2
n+6 chia hết cho 3n-2
=>3(n+6) chia hết cho 3n-2
=>3n+18 chia hết cho 3n-2
=>[3n+18-(3n-2)] chia hết choa 3n-2
=>(3n+18-3n+2) chia hết cho 3n-2
=>20 chia hết cho 3n-2
=> 3n-2\(\in\left\{1;2;4;5;10;20\right\}\)
Lập bảng là ra
Dâu # là chia hết nhé :
Ta có :
n + 6 # 3n -2
=> 3(n + 6) # 3n - 2
=> 3n + 18 # 3n - 2
=> (3n - 2) + 20 # 3n-2
mà 3n - 2 # 3n - 2
=> 20 # 3n - 2
=> \(3n-2\in\left\{1;2;4;5;10;20\right\}\)
=> \(3n\in\left\{3;4;6;7;12;22\right\}\)(loại 3n = 4;7;22 vì các số đó ko chia hết cho 3)
=> \(n\in\left\{1;2;4\right\}\)
tìm tất cả các số tự nhiên n để n+6 chia hết cho 3n-2
n+6 chia hết cho 3n-2
=> 3n+18 chia hết cho 3n-2
=> 3n-2+20 chia hết cho 3n-2
Vì 3n-2 chia hết cho 3n-2
=> 20 chia hết cho 3n-2
=> 3n-2 thuộc Ư(20)
3n-2 | n |
1 | 1 |
2 | KTM |
4 | 3 |
5 | KTM |
10 | 4 |
20 | KTM |
KL: n thuộc {1; 3; 4}