Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jungkook
Xem chi tiết
Km123 San Mine
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 8:52

a: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: IO là phân giác của góc DIA

=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IO' là phân giác của góc AIE

=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)

Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)

=>\(2\cdot\widehat{OIO'}=180^0\)

=>\(\widehat{OIO'}=90^0\)

b: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: IA=IE

ID=IA

Do đó: ID=IE

=>I là trung điểm của DE

=>I là tâm đường tròn đường kính DE

Xét ΔDAE có

AI là bán kính

\(AI=\dfrac{DE}{2}\)

Do đó: ΔADE vuông tại A

=>A nằm trên (I)

Xét (I) có

IA là bán kính

O'O\(\perp\)IA tại A

Do đó: OO' là tiếp tuyến của (I)

=>O'O là tiếp tuyến của đường tròn đường kính DE

 

Linh Trịnh (G)
Xem chi tiết
Huy Nguyen
17 tháng 5 2021 lúc 16:32

Có vẽ hình ko bạn

Khách vãng lai đã xóa
Đoàn Tuấn Anh
Xem chi tiết
ĐỖ MẠNH TÀI
Xem chi tiết
trương quốc quang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2017 lúc 11:02

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: IA = ID = IE (chứng minh trên)

Suy ra A nằm trên đường tròn tâm I đường kính DE

Vì OO’ ⊥ IA tại A nên OO’ là tiếp tuyến của đường tròn (I; DE/2)

Nguyễn Thu Hương
Xem chi tiết

a: Ta có:(O) và (O') tiếp xúc ngoài tại A

=>A nằm giữa O và O'

=>B,O,A,O',C thẳng hàng

=>BA và CA lần lượt là đường kính của (O) và (O')

Kẻ tiếp tuyến chung AI của (O) và (O'), I\(\in\)DE
Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: ID=IA

IA=IE

Do đó: ID=IE

=>I là trung điểm của DE

Xét ΔADE có

AI là đường trung tuyến

AI=1/2DE

Do đó: ΔADE vuông tại A

=>\(\widehat{DAE}=90^0\)

b: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)MB tại D

Xét (O') có

ΔAEC nội tiếp

AC là đường kính

Do đó: ΔAEC vuông tại E

=>AE\(\perp\)MC tại E

Xét tứ giác MDAE có \(\widehat{MDA}=\widehat{MEA}=\widehat{DAE}=90^0\)

nên MDAE là hình chữ nhật

c: ta có: MDAE là hình chữ nhật

=>MA cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của MA

=>MA\(\perp\)BC tại A

=>MA là tiếp tuyến chung của (O) và (O')