Cho tan giác ABC có trọng tâm G. CMR tam giác GAB. tam giác GBC tam giác BAC có cùng diện tích
Cho tam giác ABC. G nằm trong tam giác ABC. Chứng minh răng nếu diện tích tam giác GAB = diện tích tam giác GAC= diện tích tam giác GBC thì G là trọng tâm của tam giác ABC
Em tham khảo tại link này nhé.
Câu hỏi của truong nhat linh - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC. G nằm trong tam giác ABC. Chứng minh răng nếu diện tích tam giác GAB = diện tích tam giác GAC = diện tích tam giác GBC thì G là trọng tâm của tam giác ABC
Kéo dài BG cắt AC tại N; CG cắt AB tại M
Có : SAGC = \(\frac{1}{2}\)h.GC ; SBGC = \(\frac{1}{2}\). k. GC mà SAGC = SGBC nên h = k
Mặt khác, SGAM = \(\frac{1}{2}\)h.GM ; SGBM = \(\frac{1}{2}\)k. GM
=> SGAM = SGBM
Lại có : tam giác GAM; GBM đều chung chiều cao hạ từ G xuống AB => đáy MA = MB => M là trung điểm của AB => CM là trung tuyến
+) Tương tự, từ SGAB = SGBC => N là trung điểm của AC => BN là trung tuyến
BN cắt CM tại G => G là trọng tâm tam giác ABC
Cho tam giác ABC, các đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm G. Chứng minh:
a) SAGP = SPGB = SBGM = SMGC = SCGN = SNGA;
b) Các tam giác GAB, GBC và GCA có diện tích bằng nhau
a) Tam giác AGP và PGB có chung đường cao hạ từ đỉnh G và AP = PB nên SAGP = SPGB
Tương tự, ta có: SBGM = SMGC và SCGN = SNGA.
Vì G là trọng tâm DABC Þ AG = 2GM.
Þ SBGM = 1 2 SABG Þ SBGM = SAGP = SPGB.
Chứng minh tương tự, ta suy ra được:
SAGP = SPGB = SBGM = SMGC = SCGN = SNGA
b) Sử dụng kết quả câu a) ta có diện tích mỗi tam giác bằng 1 6 SABC, từ đó suy ra ĐPCM.
Cho tam giác ABC, kẻ 3 đường thẳng AM,BN,CP nằm trong tam giác. G là giao điểm của 03 đường thẳng trên. Chứng minh rằng nếu S tam giác GAC= S tam giác GBC= S tam giác GAB (S là diện tích) thì G là trọng tâm của tam giác.
Cho tam giác ABC , G là 1 điểm nằm trong tam giác ABC . CMR :
Nếu SGBC = SGAC = S GAB thì G là trọng tâm của tam giác ABC ,
Gọi M là giao điểm của GA với BC.
Ta thấy \(S_{GAB}=S_{GAC}\) mà hai tam giác trên chung cạnh đáy GA nên chiều cao hạ từ B và C xuông GA là bằng nhau.
Vậy thì \(S_{GBM}=S_{GCM}\)
Từ đó suy ra BM = CM hay M là trung điểm BC.
Vậy AM là trung tuyến tam giác ABC.
Lại có \(S_{GBM}=\frac{S_{GBC}}{2}=\frac{S_{ABG}}{2}\Rightarrow\frac{AG}{GM}=2\)
Vậy nên G là trọng tâm tam giác ABC.
Cho tam giác ABC có AC là cho trọng tâm của tam giác và AB = 15 BC = 18 AC = 27
a) Tính
b) Tính ��
Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.
a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.
b) Tính diện tích tam giác GBC.
Tham khảo:
a) Đặt \(a = BC,b = AC,c = AB.\)
Ta có: \(p = \frac{1}{2}(15 + 18 + 27) = 30\)
Áp dụng công thức heron, ta có:
\({S_{ABC}} = \sqrt {30(30 - 15)(30 - 18)(30 - 27)} = 90\sqrt 2 \)
Và \(r = \frac{S}{p} = \frac{{90\sqrt 2 }}{{30}} = 3\sqrt 2 \)
b) Gọi, H, K lần lượt là chân đường cao hạ từ A và G xuống BC, M là trung điểm BC.
G là trọng tâm tam giác ABC nên \(GM = \frac{1}{3}AM\)
\(\begin{array}{l} \Rightarrow GK = \frac{1}{3}.AH\\ \Rightarrow {S_{GBC}} = \frac{1}{3}.\,{S_{ABC}} = \frac{1}{3}.90\sqrt 2 = 30\sqrt 2 .\end{array}\)
Cho tam giác ABC có A(-1;0),B(4;0),C(0;m), m≠0. Gọi G là trọng tâm của tam giác ABC. Xác định m để tam giác GAB vuông tại G